Neurochemical Research

, Volume 18, Issue 9, pp 1015–1022 | Cite as

2-Phenylethylamine-induced changes in catecholamine receptor density: Implications for antidepressant drug action

  • P. R. Paetsch
  • A. J. Greenshaw
Original Articles

Abstract

It is now established that (1) concentrations of 2-phenylethylamine (PEA) are greatly increased in brain following administration of monoamine oxidase inhibitor (MAOI) antidepressants; (2) PEA is a metabolite of the MAOI antidepressant phenelzine; and (3) PEA may be a neuromodulator of catecholamine activity. On the basis of these observations, the effects of long term increases in brain PEA on catecholamine receptors have been assessed. Both PEA and antidepressants induced a reduction in the behavioural response to the β2 adrenoceptor agonist salbutamol. Radioligand binding measurements revealed that 28 day administration of PEA in combination with the type B MAOI (−)-deprenyl results in a decrease in the density of β1 adrenoceptors but not β2 adrenoceptors in rat cerebral cortex and cerebellum. (−)-Deprenyl alone also induced a significant decrease in β1-adrenoceptors but when PEA was added to this treatment there was a further decrease in β2-adrenoceptor density. Only changes in β1 adrenoceptor density were evident following 28 day administration of MAOI antidepressants. PEA also induced a decrease in the density of D1-like dopamine (DA) receptors in the rat striatum. MAOI antidepressants induced a decrease in the density of both D1-like and D2-like DA receptors. These data are discussed in terms of a possible role of PEA-catecholamine interactions in antidepressant drug action.

Key Words

2-Phenylethylamine β-adrenoceptors salbutamol dopamine receptors MAO tricyclics antidepressants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boulton, A. A., and Juorio, A. V. 1982. Brain trace amines. Pages 189–222,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 1, Plenum Publishing Corp., New York, N.Y.Google Scholar
  2. 2.
    Boulton, A.A. 1979. The trace amines: Neurohumors (cytosolic, pre- and/or post-synaptic, secondary, indirect?). Behav. Brain Sci. 2:418P.Google Scholar
  3. 3.
    Paterson, I. A., Juorio, A. V., and Boulton, A. A. 1990. 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J. Neurochem. 55:1827–1837.PubMedGoogle Scholar
  4. 4.
    Boulton, A. A., and Milward, L. 1971. Separation, determination and quantitative analysis of urinary phenylethylamine. J. Chromatogr. 57:187–196.Google Scholar
  5. 5.
    Sabelli, H. C., and Mosnaim, A. D. 1974. Phenylethylamine hypothesis of affective disorder. Am. J. Psychiat. 131:695–699.PubMedGoogle Scholar
  6. 6.
    Potkin, S. G. Karoum, F., Chuang, L.-W., Cannon-Spoor, H. E., Phillips, I., and Wyatt, R. J. 1979. Phenylethylamine in chronic paranoid schizophrenia. Science 206:470–471.PubMedGoogle Scholar
  7. 7.
    Szymanski, H. V., Naylor, E. W., and Karoum, F. 1987. Plasma phenylethylamine and phenylalanine in chronic schizoprenic patients. Biol. Psychiat. 22:194–198.PubMedGoogle Scholar
  8. 8.
    Semba, J. I., Nankai, M., Maruyama, Y., Kaeno, S., Watanabe, A., and Takahashi, R., 1988. Increase in urinary β-phenylethylamine preceding the switch from mania to depression: a “rapid cycler”. J. Nerv. Ment. Dis. 176:116–119.PubMedGoogle Scholar
  9. 9.
    Bornstein, R. A., Baker, G. B., Carroll, A., King, G., Ashton, S. 1993. Phenylethylamine metabolism in Tourette's syndrome. J. Neuropsychiat. Clin. Neurosci. 2:408–412.Google Scholar
  10. 10.
    Baker, G. B., Bornstein, R. A., Rouget, A. C., Ashton, S. E., van Muyden, J. C., and Coutts, R. T. 1991. Phenylethylaminergic mechanisms in attention deficit disorder. Biol. Psychiat. 29:15–22.PubMedGoogle Scholar
  11. 11.
    McManus, D. J., Mousseau D. D., Paetsch, P. R., Wishart, T. B., and Greenshaw, A. J. 1992. β-Adrenoceptors and antidrepressants: possible 2-phenylethylamine mediation of chronic phenelzine effects. Biol. Psychiat. 30:1122–1130.Google Scholar
  12. 12.
    Philips, S. R., and Boulton, A. A. 1979. The effects of monoamine oxidase inhibitors on some arylalkylamines in rat striatum. J. Neurochem. 33:159–167.PubMedGoogle Scholar
  13. 13.
    Baker, G. B., LeGatt, D. F., and Coutts, R. T. 1982. Effects of acute and chronic administration of phenelzine on β-phenylethylamine levels in rat brain. Proc. West. Pharmacol. Soc. 25:417–420.PubMedGoogle Scholar
  14. 14.
    Dyck, L. E., Durden, D. A., and Boulton, A. A. 1985. Formation of β-phenylethylamine from the antidepressant, β-phenylethyl-hydrazine. Biochem. Pharmacol., 34:1925–1929.PubMedGoogle Scholar
  15. 15.
    Juorio, A. V., Greenshaw, A. J., and Wishart, T. B. 1988. Reciprocal changes in striatal dopamine and β-phenylethylamine induced by reserpine in the presence of monoamine oxidase inhibitors. Naunyn-Schmied. Arch. Pharmacol. 338:644–648.Google Scholar
  16. 16.
    Henry, D. P., Russell, W. I., Clemens J. A., and Plebus, L. A. 1988. Phenylethylamine andp-tyramine in the extracellular space of the rat brain: quantification using a new radioenzymatic assay and in situ microdialysis. Pages 239–250in Boulton, A. A., Juorio, A. V., and Downer, R. G. H. (eds.), Trace Amines: Comparative and Clinical Neurobiology, Humana Press, Clifton, N.J.Google Scholar
  17. 17.
    Dyck, L. E. 1989. Release of some endogenous trace amines from rat striatal slices in the presence and absence of a monoamine oxidase inhibitor. Life Sci. 44:1149–1156.PubMedGoogle Scholar
  18. 18.
    Hauger, R. L., Skolnick, P., and Paul, S. M. 1982. Specific [3H]β-phenylethylamine binding sites in rat brain. Eur. J. Pharmacol. 83:147–148.PubMedGoogle Scholar
  19. 19.
    Nguyen, T. V., and Juorio, A. V. 1989. Binding sites for brain trace amines. Cell. Mol. Neurobiol. 9:297–311.PubMedGoogle Scholar
  20. 20.
    Li, X. M., Juorio, A. V., Paterson, I. A., and Boulton, A. A. 1992. Absence of 2-phenylethylamine binding after monoamine oxidase inhibition in rat brain. Eur. J. Pharmacol. 210:189–193.PubMedGoogle Scholar
  21. 21.
    Horn, A. S., and Synder, S. H. 1973. Steric requirements for catecholamine uptake by rat brain synaptosomes: studies with rigid analogues of amphetamine. J. Pharmacol. Exp. Ther. 180:523–530.Google Scholar
  22. 22.
    Raiteri, M., Del Carmine, R., Bertollini A., and Levi, G. 1977. Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytryptamine. Eur. J. Pharmacol. 41:133–143.PubMedGoogle Scholar
  23. 23.
    Dyck, L. E. 1983. Release of monoamines from striatal slices by phenelzine and β-phenylethylamine. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 7:797–800.Google Scholar
  24. 24.
    Philips, S. R., and Robson, A. M. 1983. In vivo release of endogenous dopamine from the rat caudate nucleus by phenylethylamine. Neuro-pharmacol. 22:1297–1301.Google Scholar
  25. 25.
    Philips, S. R. 1986. In vivo release of endogenous dopamine from rat caudate nucleus by β-phenylethylamine and α,α-dideutero-β-phenylethylamine. Life Sci. 39:2395–2400.PubMedGoogle Scholar
  26. 26.
    Bailey, B. A., Philips, S. R., and Boulton, A. A. 1987. In vivo release of endogeneous dopamine, 5-hydroxytryptamine and some of their metabolites from rat caudate nucleus by phenylethylamine. Neuochem. Res. 12:173–178.Google Scholar
  27. 27.
    Fuxe, K., Grobecker, H., and Jonsson, J. 1967. The effect of β-phenylethylamine on central and peripheral monoamine-containing neurones. Eur. J. Pharmacol. 2:202–207.PubMedGoogle Scholar
  28. 28.
    Antelman, S. M., Edwards, D. J., and Lin M. 1977. Phenylethylamine: evidence for a direct postsynaptic dopamine-receptor stimulatory action. Brain Res. 127:317–322.PubMedGoogle Scholar
  29. 29.
    McQuade, P. S., and Juorio, A. V. 1982. The effects of the administration of β-phenylethylamine on tyramine metabolism. Eur. J. Pharmacol. 83:277–282.PubMedGoogle Scholar
  30. 30.
    Henwood, R. W., Boulton, A. A., and Phillis, J. W. 1979. Iontophoretic studies of some trace amines in the mammalian CNS. Brain Res. 164:347–351.PubMedGoogle Scholar
  31. 31.
    Lundberg, P. A., Oreland, L., and Engberg, G. 1979. Inhibition of locus coeruleus neuronal activity by β-phenylethylamine. Life Sci. 36:1889–1896.Google Scholar
  32. 32.
    Paterson, I. A. 1988. The potentiation of cortical neurone responses to noradrenaline by β-phenylethylamine: effects of lesions of the locus coeruleus. Neurosci. Lett. 87:139–144.PubMedGoogle Scholar
  33. 33.
    Paterson, I. A. 1988. An interaction between β-phenylethylamine and noradrenaline: an iontophoretic study in the rat cerebral cortex. Pages 201–212in Boulton, A. A., Juorio, A. V., and Downer, R. G. H. (eds.), Trace Amines, Compararitive and Clinical Neurobiology, Humana Press, Clifton, N.J.Google Scholar
  34. 34.
    Paterson, I. A., and Boulton, A. A. 1988. β-Phenylethylamine enhances single cortical neurone responses to noradrenaline in the rat. Brain Res. Bull. 20:173–177.PubMedGoogle Scholar
  35. 35.
    Paterson, I. A., and Hertz, L. 1989. Sodium-independent transport of noradrenaline in mouse and rat astrocytes in primary culture. J. Neurosci. Res. 23:71–77.PubMedGoogle Scholar
  36. 36.
    Jones, R. S. G., and Boulton, A. A. 1980. Interactions betweenp-tyramine,m-tyramine or β-phenylethylamine and dopamine on single neurones in the cortex and caudate nucleus of the rat. Can. J. Physiol. Pharmacol. 58:222–227.PubMedGoogle Scholar
  37. 37.
    Durden, D. A., and Philips, S. R. 1980. Kinetic measurements of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain. J. Neurochem. 51:1725–1732.Google Scholar
  38. 38.
    Bowsher, R. R., and Henry, D. P. 1986. Aromatic L-amino acid decarboxylase: Biochemistry and functional significance. Pages 33–78in Boulton, A. A., Baker, G. B., and Yu, P. H. (eds.), Neuromethods, Vol. 5, Neurotransmitter Enzymes, Humana Press, Clifton, N.J.Google Scholar
  39. 39.
    Pardridge, W. M. 1977. Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 28:103–108.PubMedGoogle Scholar
  40. 40.
    Pardridge, W. M., and Oldendorf, W. H. 1975. Kinetic analysis of blood-brain barrier transport of amino acids. Biochim. Biophys. Acta 401:128–136.PubMedGoogle Scholar
  41. 41.
    Conlay, L. A., Wurtman, R. J., Lopez, G., Coriella, I., Blusztajn, J. K., Vacanti, C. A., Logue, M., During, M., Caballero, B., Maher, T. J., and Evoniuk, G. 1989. Effects of running the Boston Marathon on plasma concentrations of large neutral amino acids. J. Neural Transm. 76:65–71.PubMedGoogle Scholar
  42. 42.
    Birkmayer, W., Reiderer, P., Linauer, W., and Knoll, J. 1984. L-Deprenyl plus L-phenylalanine in the treatment of depression. J. Neural Transm. 59:81–87.PubMedGoogle Scholar
  43. 43.
    van Praag, H. M., and Lemus, C. 1986. Monoamine precursors in the treatment of psychiatric disorders. Pages 90–129in Wurtman, R. J., and Wurtman, J. J. (eds.), Nutrition and the Brain, Vol. 7, Raven Press, New York.Google Scholar
  44. 44.
    Young, S. N., Smith, S. E., Pihl, R., and Ervin, F. R. 1985. Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacol. 87:173–177.Google Scholar
  45. 45.
    Delgado, P. L., Charney, D. S., Price, L. H., Aghajanian, G. K., Landis, H., and Heninge, G. R. 1990. Serotonin function and the mechanism of antidepressant action. Arch. Gen. Psychiat. 47:411–418.PubMedGoogle Scholar
  46. 46.
    Eriksson, T., and Carlsson, A. 1988. β-Adrenergic control of brain uptake of large neutral amino acids. Life Sci. 42:1583–1589.PubMedGoogle Scholar
  47. 47.
    Baker, G. B., and Greenshaw, A. J. 1989. Effects of long-term administration of antidepressant and neuroleptics on receptors in the central nervous system. Cell. Mol. Neurobiol. 9:1–44.PubMedGoogle Scholar
  48. 48.
    Paetsch, P. R., and Greenshaw, A. J. 1991. β-Adrenergic effects on plasma and brain large neutral aminoacids are unaltered by chronic administration of antidepressants. J. Neurochem. 56:2027–2032.PubMedGoogle Scholar
  49. 49.
    Baker, G. B., Coutts, R. T., and Rao, T. S. 1987. Neuropharmacological and neurochemical properties of N-(cyanoethyl)-2-phenylethylamine, a pro-drug of 2-phenylethylamine. Br. J. Pharmacol. 92:243–255.PubMedGoogle Scholar
  50. 50.
    Baker, G. B., Greenshaw, A. J., and Coutts, R. T. 1988. Chronic administration of monoamine oxidase inhibitors: implications for interactions between trace amines and catecholamines. Pages 569–572in Dahlström, A., Belmaker, R. H., and Sandler, M. (eds.), Progress in Catecholamine Research, Part A: Basic Aspects and Peripheral Mechanisms, Alan R. Liss, Inc., New York.Google Scholar
  51. 51.
    McManus, D. J., and Greenshaw, A. J. 1991. Differential effects of antidepressants on GABAB and β-adrenergic receptors in rat cerebral cortex. Biochem. Pharmacol. 42:1525–1528.PubMedGoogle Scholar
  52. 52.
    Przegalinski, E., Baran, L., Siwanowicz, J., and Bigajska, K. 1984. Repeated treatment with antidepressant drugs prevents salbutamol-induced hypo-activity in rats. Pharmacol. Biochem. Behav. 21:696–698.Google Scholar
  53. 53.
    Przegalinski, E., Baran, L., and Siwanowicz, J. 1983. The effect of chronic treatment with antidepressant drugs on salbutamol-induced hypoactivity in rats. Psychopharmacol. 80:355–359.Google Scholar
  54. 54.
    Prezegalinski, E., Siwanowicz, J., Bigajska, K., and Baran, L. 1984. Chronic treatment with electroconvulsive shock prevents the salbutamol-induced hypoactivity in rats. J. Pharm. Pharmacol. 36:626–628.PubMedGoogle Scholar
  55. 55.
    Paetsch, P. R., Baker, G. B., and Greenshaw, A. J. 1993. Induction of functional down-regulation of β-adrenoceptors in rats by 2-phenylethylamine. J. Pharm. Sci. 82:22–24.PubMedGoogle Scholar
  56. 56.
    Minneman, K. P., Dibner, M. D., Wolfe, B. B., and Molinoff, P. B. 1979. β1- and β2-adrenergic receptors in rat cebral cortex are independently regulated. Science 204:866–868.PubMedGoogle Scholar
  57. 57.
    Paetsch, P. R., Greenshaw, A. J., and Baker, G. B. 1991. Antidepressant effects on β-adrenoceptors: comparison of functional and density changes in rats. Proc. 3rd IBRO World Congress of Neuroscience P31.17,. p. 210.Google Scholar
  58. 58.
    Paetsch, P. R., Greenshaw, A. J. 1992. Effects of chronic antidepressant treatment on dopamine-related3H-SCH 23390 and3H-spiperone binding in the rat striatum. Cell Molec. Neurobiol. 12:597–606.PubMedGoogle Scholar
  59. 59.
    Rossetti, Z. L., Silvia, C. P., Krajnc, D., Neff, N. H., and Hadjiconstantinou, M. 1990. Aromatic L-amino acid decarboxylase is modulated by D1 dopamine receptors in the rat retina. J. Neurochem. 54:787–791.PubMedGoogle Scholar
  60. 60.
    Zhu, M-Y., Juorio, A. V., Paterson, I. A., and Boulton, A. A. 1992. Regulation of aromatic L-amino decarboxylase by dopamine receptors in the rat brain. J. Neurochem. 58:636–641.PubMedGoogle Scholar
  61. 61.
    Juorio, A. V., Greenshaw, A. J., Zhu, M. Y., and Paterson, J. A. 1991. The effects of some neuroleptics andd-amphetamine on striatal 2-phenylethylamine in the mouse. Gen. Pharmac. 22:407–413.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • P. R. Paetsch
    • 1
  • A. J. Greenshaw
    • 1
  1. 1.Neurochemical Research Unit, Department of PsychiatryUniversity of AlbertaEdmontonCanada

Personalised recommendations