Lithuanian Mathematical Journal

, Volume 25, Issue 3, pp 281–287 | Cite as

Numerical solution of a system of nonlinear differential equations with a nonlocal condition

  • R. Čiupaila


Differential Equation Nonlinear Differential Equation Nonlocal Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V.-S. S. Zaretskas and V. L. Ragul'skene, Mercury Switching Elements for Automatic Systems [in Russian], Energiya, Moscow (1971).Google Scholar
  2. 2.
    M. P. Sapagovas, “Determination of the form of the free surface of a drop by a variational-difference method,” in: Materials of the All-Union Conference, “Variational-Difference Methods in Mathematical Physics” [in Russian], Novosibirsk (1978), pp. 117–128.Google Scholar
  3. 3.
    A. E. Bryson and Yu-Chi Ho, Applied Control Optimal Revised: Optimization, Estimation, and Control, Halsted Press (1975).Google Scholar
  4. 4.
    Ya. I. Frenkel', “Rolling of a drop on an inclined plane,” Zh. Eksp. Teor. Fiz.,18, No. 7, 659–667 (1948).Google Scholar
  5. 5.
    T. Veidaite, P. Kruteev, M. Sapagovas, and A. Yurkul'nyavichyus, “Method of solution of a differential equation, describing the surface of a drop,” Liet. Mat. Rinkinys,17, No. 3, 168–169 (1977).Google Scholar
  6. 6.
    R. Finn, “Capilarity phenomena,” Usp. Mat. Nauk.,29, No. 4, 131–152 (1974).Google Scholar
  7. 7.
    V. M. Goloviznin, A. A. Samarskii, and A. P. Favorskii, “Use of the principle of least action for constructing discrete mathematical models in magnetic hydrodynamics,” Dokl. Akad. Nauk SSSR,246, No. 5, 1083–1087 (1979).Google Scholar
  8. 8.
    V. Belikov, V. Goloviznin, and N. Koptelova, “Numerical solution of the problem of equilibrium of a three-dimensional mercury bridge,” in: Differential Equations and Their Application [in Russian], Vol. 31, Vilnius (1982), pp. 9–16.Google Scholar
  9. 9.
    R. Chyupaila, “Three-dimensional dynamics model of a fluid-metallic electrocontact,” in: 24th Conference of the Lithuanian Mathematical Society. Abstract of Reports [in Russian], Vilnius (1983), pp. 198–199.Google Scholar
  10. 10.
    R. Yu. Chyupaila, “Variational principles in a three-dimensional dynamical model of a fluid-metallic electrocontact,” Vilnius, 1984 Deposited in LitNIINTI, 1984, No. 1191 Li-D84.Google Scholar
  11. 11.
    R. Chyupaila, “Solution of a stationary problem of hydromechanics of small volume,” in: 25th Conference of the Lithuanian Mathematical Society. Abstracts of Reports [in Russian], Vilnius (1984), pp. 293–294.Google Scholar
  12. 12.
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Wiley (1953).Google Scholar
  13. 13.
    A. A. Samarskii and N. S. Nikolaev, Methods of Solution of Difference Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  14. 14.
    A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1983).Google Scholar
  15. 15.
    B. Kvedaras and M. Sapagovas, Skaiciavimo Metodai, Mintis, Vilnius (1974).Google Scholar
  16. 16.
    E. Rothe, “Zweidimensionale parabolische Randwertaufgaben als Grenztall eindimensionaler Randwertaufgaben,” Math. Ann.,102, No. 4/5, 650–670 (1929).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • R. Čiupaila

There are no affiliations available

Personalised recommendations