Neurochemical Research

, Volume 19, Issue 1, pp 77–82 | Cite as

Taurine in the developing cat: Uptake and release in different brain areas

  • Pirjo Saransaari
  • Simo S. Oja
Original Articles


Taurine is an important modulator of neuronal activity in the immature brain. In kittens, taurine deficiency causes serious dysfunction in the cerebellar and cerebral visual cortex. The processes of taurine transport in vitro were now studied for the first time in different brain areas in developing and adult cats. The uptake of taurine consisted initially of two saturable components, high- and low-affinity, in synaptosomal preparations from the developing cerebral cortex and cerebellum, but the high-affinity uptake component completely disappeared during maturation. The release of both endogenous and preloaded labeled taurine from brain slices measured in a superfusion system was severalfold stimulated with a slow onset by depolarizing K+ (50 mM) concentrations. K+ stimulation released markedly more taurine from the cerebral cortex, cerebellum and brain stem in kittens than in adult cats. The responses were largest in the cerebellum. Both uptake and release of taurine are thus highly efficient in the brain of kittens and may be of significance in view of the vulnerability of cats to taurine deficiency.

Key Words

Taurine uptake release cat brain slices synaptosomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oja, S. S., and Kontro, P. 1983. Taurine. Pages 501–533,in A. Lajtha, (ed.), Handbook of Neurochemistry, Vol. 3, 2nd ed., Plenum Press, New York.Google Scholar
  2. 2.
    Sturman, J. A. 1988. Taurine in development. J. Nutr. 118:1169–1176.Google Scholar
  3. 3.
    Huxtable, R. J. 1989. Taurine in the central nervous system and the mammalian actions of taurine. Prog. Neurobiol. 32:471–533.Google Scholar
  4. 4.
    Sturman, J. A., and Hayes, K. C. 1980. The biology of taurine in nutrition and development. Pages 231–299, in Advances in Nutrition Research, Vol. 3, Plenum Press, New York.Google Scholar
  5. 5.
    Sturman, J. A., Moretz, R. C., French, J. H., and Wisniewski, H. M. 1985. Taurine deficiency in the developing cat: persistence of the cerebellar external granule cell layer. J. Neurosci. Res. 13:405–416.Google Scholar
  6. 6.
    Imaki, H., Moretz, R. C., Wisniewski, H. M., and Sturman, J. A. 1986. Feline maternal taurine deficiency: effects on retina and tapetum of the offspring. Dev. Neurosci. 8:160–181.Google Scholar
  7. 7.
    Palackal, T., Moretz, R., Wisniewski, H., and Sturman, J. 1986. Abnormal visual cortex development in the kittens associated with maternal dietary taurine deprivation. J. Neurosci. Res. 15:223–239.Google Scholar
  8. 8.
    Palackal, T., Moretz, R., Wisniewski, H., and Sturman, J. 1988. Ultrastructural abnormalities in the visual cortex of kittens from taurine-deficient mothers. Brain Dysfunct. 1:71–89.Google Scholar
  9. 9.
    Sotelo, C. 1975. Anatomical, physiological and biochemical studies of cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res. 94:19–44.Google Scholar
  10. 10.
    Roffler-Tarlov, S., and Turey, M. 1982. The content of amino acids in developing cerebellar cortex and deep cerebellar nuclei of granule cell deficient mutant mice. Brain Res. 247:65–73.Google Scholar
  11. 11.
    Goldowitz, D., and Mullen, R. J. 1982. Branule cell as a site of gene action in the weaver mouse cerebellum: evidence from heterozygous weaver chineras. J. Neurosci. 2:1474–1484.Google Scholar
  12. 12.
    Kontro, P., and Oja, S. S. 1987. Taurine and GABA release from mouse cerebral cortex slices: potassium stimulation releases more taurine than GABA from developing brain. Dev. Brain Res. 37:277–291.Google Scholar
  13. 13.
    Kontro, P., and Oja, S. S. 1989. Release of taurine and GABA from cerebellar slices from developing and adult mice. Neuroscience 29:413–423.Google Scholar
  14. 14.
    Oja, S. S., and Kontro, P. 1989. Release of endogenous taurine and γ-aminobutyric acid from brain slices from the adult and developing mouse. J. Neurochem. 52:1018–1024.Google Scholar
  15. 15.
    Kontro, P. 1984. Comparison of taurine, hypotaurine and β-alanine uptake in brain synaptosomal preparations from developing and adult mouse. Int. J. Dev. Neurosci. 5:465–470.Google Scholar
  16. 16.
    Kontro, P., and Oja, S. S. 1987. Taurine and GABA binding in mouse brain: effects of freezing, washing and Triton X-100 treatment on membranes. Int. J. Neurosci. 32:881–889.Google Scholar
  17. 17.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–272.Google Scholar
  18. 18.
    Nelder, J. A., and Mead, R. 1965. A simplex method for function minimization. Comput. J. 7:308–313.Google Scholar
  19. 19.
    Oja, S. S., Kontro, P., and Lähdesmäki, P. 1977. Amino acids as inhibitory neurotransmitters. Prog. Pharmac. 1(3):1–119.Google Scholar
  20. 20.
    Huxtable, R. J. 1992. Physiological actions of taurine. Physiol. Rev. 72:101–163.Google Scholar
  21. 21.
    Oja, S. S., Uusitalo, A. J., Vahvelainen, M.-L., and Piha, R. S. 1968. Changes in cerebral and hepatic amino acids in the rat guinea pig during development. Brain Res. 11:655–661.Google Scholar
  22. 22.
    Saransaari, P., and Oja, S. S. 1992. Taurine transport in the mouse cerebral cortex during development and aging. Pages 215–220,in Lombardini, J. B., Schaffer, S. W. and Azuma, J. (eds.), Taurine. Nutritional Value and Mechanisms of Action, Plenum Press, New York.Google Scholar
  23. 23.
    Saransaari, P., and Oja, S. S. 1992. Release of GABA and taurine from brain slices. Prog. Neurobiol. 38:455–482.Google Scholar
  24. 24.
    Oja, S. S., and Kontro, P. 1984. GABA, hypotaurine and taurine transport in brain slices from developing mouse. Dev. Neurosci. 6:271–277.Google Scholar
  25. 25.
    Oja, S. S. 1971. Exchange of taurine in brain slices from adult and 7-day-old rats. J. Neurochem. 18:1847–1852.Google Scholar
  26. 26.
    Oja, S. S., Lehtinen, I., and Lähdesmäki, P. 1976. Taurine transport rates between plasma and tissues in adult and 7-day-old mice. Q. J. Exp. Physiol. 61:133–143.Google Scholar
  27. 27.
    Korpi, E. R. Kontro, P., Nieminen, K., Marnela, K.-M., and Oja, S. S. 1981. Spontaneous and depolarization-induced efflux of hypotaurine from mouse cerebral cortex slices: comparison with taurine and GABA. Life Sci. 29:811–816.Google Scholar
  28. 28.
    Pin, J.-P., Weiss, S., Sebben, M., Kemp, D. E., and Bockaert, J. 1986. Release of endogenous amino acids from striatal neurons in primary culture. J. Neurochem. 47:594–603.Google Scholar
  29. 29.
    Kontro, P., and Oja, S. S. 1988. Release of taurine, GABA and dopamine from rat striatal slices: mutual interactions and developmental aspects. Neuroscience 24:49–58.Google Scholar
  30. 30.
    Pasantes-Morales, H., and Schousboe, A. 1989. Release of taurine from astrocytes during potassium-evoked swelling. Glia 2:45–50.Google Scholar
  31. 31.
    Schousboe, A., Morán, J., and Pasantes-Morales, H. 1990. Potassium-stimulated release of taurine from cultured cerebellar granule neurons is associated with cell swelling. J. Neurosci. Res. 27:71–77.Google Scholar
  32. 32.
    Oja, S. S., and Saransaari, P. 1992. Cell volume changes and taurine release in cerebral cortical slices. Pages 369–374,in Lombardini, J. B., Schaffer, S. W. and Azuma, J. (eds.), Taurine. Nutritional Value and Mechanisms of Action. Plenum Press, New York.Google Scholar
  33. 33.
    Oja, S. S., and Saransaari, P. 1992. Taurine release and swelling of cerebral cortex slices from adult and developing mice in media of different ionic compositions. J. Neurosci. Res. 32:551–561.Google Scholar
  34. 34.
    Pasantes-Morales, H., and Schousboe, A. 1988. Volume regulation in astrocytes: a role for taurine as an osmoeffector. J. Neurosci. Res. 20:505–509.Google Scholar
  35. 35.
    Sturman, J. 1992. Review: taurine deficiency and the cat. Pages 1–5,in Lombardini, J. B., Schaffer, S. W. and Azuma, J. (eds.), Taurine. Nutritional Value and Mechanisms of Action, Plenum Press, New York.Google Scholar
  36. 36.
    Trenkner, E., and Sturman, J. A. 1991. The role of taurine in the survival and function of cerebellar cells in cultures of early postnatal cat. Int. J. Dev. Neurosci. 9:77–88.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Pirjo Saransaari
    • 1
  • Simo S. Oja
    • 1
  1. 1.Tampere Brain Research Center, Department of Biomedical SciencesUniversity of TampereTampereFinland

Personalised recommendations