Neurochemical Research

, Volume 19, Issue 1, pp 31–35 | Cite as

Association of glucocerebroside homolog biosynthesis with Schwann cell proliferation

  • Jeffrey K. Yao
  • Jun E. Yoshino
Original Articles

Abstract

The biosynthesis of myelin-associated glycolipids was studied in quiescent secondary cultures of Schwann cells and in a rapidly proliferating population of transfected Schwann cells (TSC) by in vitro incorporation of [3H]galactose. The TSC demonstrated a marked increase (>10-fold) in [3H]galactose incorporation when compared to quiescent Schwann cells. The level (or amount) of [3H]galactose incorporation into lipids is dependent upon the number of TSC in culture. The majority of3H-labeled lipids were oligohexosylceramides (GL-2, GL-3, and GL-4). Substrates that inhibit TSC proliferation, collagen type I and Matrigel, an artificial basement membrane, decrease the [3H]galactose incorporation by 25% and 80%, respectively. Our results indicate that the synthesis of glucocerebroside and its homologs is associated with Schwann cell proliferation.

Key Words

Glucocerebroside oligohexosylceramides galactocerebroside quiescent Swann cells transfected Schwann cells [3H]galactose 

Abbreviations

HPTLC

high-performance thin-layer chromatography

TL

total lipids

NL

non-polar lipids

GL

glycolipids

PL

phospholipids

MGDG

monogalactosyl diacylglycerol

GalCe

galactocerebroside

GalCe-OH

galacto hydroxycerebroside

GlcCe

glucocerebroside

Su

sulfatide

Su-OH

hydroxysulfatide

GL-2

lactosylceramide

GL-3

trihexosylceramide

GL-4

tetrahexosylceramide

PE

phosphatidylethanolamine

PC

phosphatidylcholine

PS

phosphatidylserine

PI

phosphatidylinositol

TSC

transfected Schwann cells

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brady, R. O. 1976. Biochemical genetics in neurology. Arch. Neurol. 33:145–151.Google Scholar
  2. 2.
    Brammer, M. J. 1984. Synthesis of gluco- and galactocerebroside in bovine neurons and oligodendroglia. J. Neurochem. 42:135–141.Google Scholar
  3. 3.
    Brockes, J. P., Fields, K. L., and Raff, M. C. 1979. Studies on cultured Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 165:105–118.Google Scholar
  4. 4.
    Campanella, R. 1992. Membrane lipids modifications in human gliomas of different degrees of malignancy. J. Neurosurg. Sci. 36:11–25.Google Scholar
  5. 5.
    Chatterjee, S. 1991. Lactosylceramide stimulates aortic smooth muscle cell proliferation. Biochem. Biophys. Res. Commun. 181:554–561.Google Scholar
  6. 6.
    Costantino-Ceccarini, E., and Poduslo, J. F. 1989. Regulation of UDP-glucose ceramide glucosyltransferase after crush and transection nerve injury. J. Neurochem. 53:205–211.Google Scholar
  7. 7.
    Datta, S. C., and Radin, N. S. 1988. Stimulation of liver growth and DNA synthesis by glucosylceramide. Lipids 23:508–510.Google Scholar
  8. 8.
    Hoshi, M., William, M., and Kishimoto, Y. 1973. Characterization of brain cerebrosides at early stages of development in the rat. J. Neurochem. 21:709–712.Google Scholar
  9. 9.
    Jessen, K. R., Mirsky, R., and Morgan, L. 1987. Axonal signals regulate the differentiation of non-myelin-forming Schwann cells: An immunohistochemical study of galactocerebroside in transected and regenerating nerves. J. Neurosci. 7:3362–3369.Google Scholar
  10. 10.
    Jessen, K. R., Morgan, L. O., Brammer, M. J., and Mirsky, R. 1985. Galactocerebroside is expressed by non-myelin-forming Schwann cells in situ. J. Cell Biol. 101:1135–1143.Google Scholar
  11. 11.
    Kean, E. L. 1966. Separation of gluco- and galactocerebrosides by means of borate thin-layer chromatography. J. Lipid Res. 7:449–452.Google Scholar
  12. 12.
    Lyerla, T. A., Gross, S. K., and McCluer, R. H. 1986. Glycosphingolipid patterns in primary mouse kidney cultures. J. Cell. Physiol. 129:390–394.Google Scholar
  13. 13.
    Mirsky, R., Winter, J., Abney, E. R., Pruss, R. M., Gavrilovic, J., and Raff, M. C. 1980. Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture. J. Cell Biol. 84:483–494.Google Scholar
  14. 14.
    Ogura, K., and Sweeley, C. C. 1992. Mitogenic effects of bacterial neuroaminidase and lactosylceramide on human cultured fibroblasts. Exp. Cell Res. 199:169–173.Google Scholar
  15. 15.
    Ranscht, B., Clapshaw, P. A., Price, J., Nobel, M., and Seifert, W. 1982. Development of oligodendrocytes and Schwann cells studied with monoclonal antibody against galactocerebroside. Proc. Natl. Acad. Sci. (USA) 79:2709–2713.Google Scholar
  16. 16.
    Shayman, J. A., Deshmukh, G. D., Mahdiyoun, S., Thomas, T. P., Wu, D., Barcelon, F. S., and Radin, N. S. 1991. Modulation of renal epithelial cell growth by glucosylceramide. J. Biol. Chem. 266:22968–22974.Google Scholar
  17. 17.
    Suzuki, K. 1989. Genetic disorders of lipid, glycoprotein, and mucopolysaccharide metabolism. Pages 715–732, in Siegel, G., Agranoff, B., Albers, R. W., and Molinoff, P. (eds.), Basic Neurochemistry, 4th edition, Raven Press, New York.Google Scholar
  18. 18.
    Tennekoon, G. I., Yoshino, J., Peden, K. W. C., Bigbee, J., Rutkowski, J. L., Kishimoto, Y., DeVries, G. H., and McKhann, G. M. 1987. Transfection of neonatal rat Schwann cell with SV-40 large T antigen under control of the metallothionein promoter. J. Cell Biol. 105:2315–2325.Google Scholar
  19. 19.
    Vance, D. E., and Sweeley, C. C. 1967. Quantitative determination of neutral glycosyl ceramides in human blood. J. Lipid Res. 8:621–630.Google Scholar
  20. 20.
    Yao, J. K. 1983. Structural alterations of peripheral nerve monogalactosylceramides during development and Wallerian degeneration. Biochim. Biophys. Acta 751:1–7.Google Scholar
  21. 21.
    Yao, J. K., and Cannon, K. P. 1983. [14C]Acetate metabolism in the peripheral nervous system. Biochim. Biophys. Acta 753:331–338.Google Scholar
  22. 22.
    Yao, J. K., and Dyck, P. J. 1987. Increased biosynthesis of endoneurial oligohexosylceramides in human peripheral neuropathy. Neurochem. Pathol. 7:251–261.Google Scholar
  23. 23.
    Yao, J. K., Natarajan, V., and Dyck, P. J. 1980. The sequential alterations of endoneurial cholesterol and fatty acid in Wallerian degeneration and regeneration. J. Neurochem. 35:933–940.Google Scholar
  24. 24.
    Yao, J. K., and Poduslo, J. F. 1988. Biosynthesis of neutral glucocerebroside homologues in the absence of myelin assembly after nerve transection. J. Neurochem. 50:630–638.Google Scholar
  25. 25.
    Yao, J. K., and Rastetter, G. M. 1985. Microanalysis of complex lipids by high-performance thin-layer chromatography. Anal. Biochem. 150:111–116.Google Scholar
  26. 26.
    Yao, J. K., Windebank, A. J., Poduslo, J. F., and Yoshino, J. E. 1990. Axonal regulation of Schwann cell glycolipid biosynthesis. Neurochem. Res. 15:279–282.Google Scholar
  27. 27.
    Yoshino, J. E., Neuberger, T. J., Cornbrooks, C. J., Tennekoon, G. I., Eng, L. F., and Devries, G. H. 1990. Proliferation and differentiation of a transected schwann cell line is altered by an artificial basement membrane. Glia 3:315–321.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Jeffrey K. Yao
    • 1
    • 2
  • Jun E. Yoshino
    • 3
  1. 1.Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburgh
  2. 2.Department of Veterans Affairs Medical CenterLaboratory ServicePittsburgh
  3. 3.Department of PsychologyColgate UniversityHamilton

Personalised recommendations