Advertisement

Neurochemical Research

, Volume 16, Issue 11, pp 1245–1251 | Cite as

Metabolism of [1-13C]glucose in a synaptosomally enriched fraction of rat cerebrum studied by1H/13C magnetic resonance spectroscopy

  • Ognen A. C. Petroff
  • Alessandro P. Burlina
  • Joel Black
  • James W. Prichard
Original Articles

Abstract

This study explored the utility of1H and13C magnetic resonance spectroscopy to study a standard synaptosomally enriched fraction (P2 pellet) made from rat cerebrum. The preparations contained high concentrations of N-acetylaspartate and γ-aminobutyric acid and low concentrations of glutamine, indicating that they were in fact rich in neuronal cytosol. The metabolic competence of the preparation was assessed by quantitative measurements of its ability to convert [1-13C]glucose into lactate, glutamate, aspartate, and other metabolites under well oxygenated conditions in 30 minutes. The minimum mean glycolytic rate was 0.8 mM glucose/min and the flow through the tricarboxylic acid cycle was equivalent to 0.2 mM glucose/min.

Key Words

1H and13C Magnetic resonance spectroscopy synaptosome brain rat [1-13C]glucose glycolysis 

Abbreviations

ppm

parts per million (chemical shift scale)

NMR

nuclear magnetic resonance

GABA

γ-aminobutyric acid

PBS

phosphate-buffered normal saline solution

TSP

3-trimethylsilylpropionate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ogino, T., Arata, Y., and Fujiwara, S. 1980. Proton correlation nuclear magnetic resonance study of metabolic regulations and pyruvate transport in anaerobic Escherichia coli cells. Biochemistry 19:3684–3691.Google Scholar
  2. 2.
    Sillerud, L. O., and Shulman, R. G. 1983. High-resolution13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Biochemistry 22:1087–1094.Google Scholar
  3. 3.
    den Hollander, J. A., Ugurbil, K., Bednar, M., Redfield, C., and Shulman, R. G. 1986. Studies of anaerobic and aerobic glycolysis in Saccharomyces cerevisiae. Biochemistry 25:203–211.Google Scholar
  4. 4.
    den Hollander, J. A., Ugurbil, K., and Shulman, R. G. 1986.31P and13C NMR studies of intermediates of aerobic and anaerobic glycolysis in Saccharomyces cerevisiae. Biochemistry 1986;25:212–219.Google Scholar
  5. 5.
    Reibstein, D., den Hollander, J. A., Pilkis, S. J., and Shulman, R. G. 1986. Studies on the regulation of yeast phosphofructo-1-kinase: its role in aerobic and anaerobic glycolysis. Biochemistry 25:219–227.Google Scholar
  6. 6.
    Sillerud, L. O., Alger, J. R., and Shulman, R. G. 1981. High-resolution proton NMR studies of intracellular metabolites in yeast using13C decoupling. J. Magn Reson 45:142–150.Google Scholar
  7. 7.
    Evanochko, W. T., Sakai, T. T., Ng, T. C., Krishna, N. R., Kim, H. D., Zeideler, R. B., and Ghanta, V. K., et al. 1984. NMR study of in vivo RIF-1 tumors. Analysis of perchloric acid extracts and identification of1H,31P, and13C resonances. Biochem Biophys Acta 805:104–116.Google Scholar
  8. 8.
    Navon, G., Burrows, H., and Cohen, J. S. 1983. Differences in metabolic levels upon differentiation of intact neuroblastoma X glioma cells observed by proton NMR spectroscopy. FEBS Lett 162:320–323.Google Scholar
  9. 9.
    Young, R. S. K., Petroff, O. A. C., Novotny, E. J., and Wong, M. (1990). Neonatal excitotoxic brain injury: Physiologic, metabolic, and pathologic findings. Dev Neurosci 12:210–220.Google Scholar
  10. 10.
    Peeling, J., Wong, D., and Sutherland, G. R. 1989. Nuclear magnetic resonance study of regional metabolism after forebrain ischemia in rats. Stroke 20:633–640.Google Scholar
  11. 11.
    Cerdan, S., Parrilla, R., Santoro, J., and Rico, M. 1985.1H NMR detection of cerebral myo-inositol. FEBS Lett 187:167–172.Google Scholar
  12. 12.
    Petroff, O. A. C., Ogino, T., and Alger, J. R. 1988. High-resolution proton magnetic resonance spectroscopy of rabbit brain: Regional metabolite levels and post-mortem changes. J Neurochem 51:163–171.Google Scholar
  13. 13.
    Ment, L. R., Stewart, W. B., Petroff, O. A. C., and Duncan, C. C. 1989. Thromboxane synthesis inhibitor in a beagle pup model of perinatal asphyxia. Stroke 20:809–814.Google Scholar
  14. 14.
    Petroff, O. A. C., Spencer, D. D., Alger, J. R., and Prichard, J. W. 1989. High-field proton magnetic resonance spectroscopy of human cerebrum obtained during surgery for epilepsy. Neurology 39:1197–1202.Google Scholar
  15. 15.
    Gill, S. S., Thomas, D. G. T., Van Bruggen, N., Gadian, D. G., Peden, C. J., Bell, J. D., Cox, J., and Menon, D. K. 1990. Proton MR spectroscopy of intracranial tumours: In vivo and in vitro studies. J Computer Assisted Tomography 14:497–504.Google Scholar
  16. 16.
    Petroff, O. A. C. 1988. Biological1H NMR Spectroscopy. Comp Biochem Physiol 90B:249–260.Google Scholar
  17. 17.
    Behar, K. L., den Hollander, J. A., Stromski, M. E., Ogino, T., Shulman, R. G., Petroff, O. A. C., and Prichard, J. W. 1983. High-resolution1H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proc Natl Acad Sci (USA) 80:4945–4948.Google Scholar
  18. 18.
    Behar, K. L., den Hollander, J. A., Petroff, O. A. C., Hetherington, H., Prichard, J. W., and Shulman, R. G. 1985. The effect of hypoglycemic encephalopathy upon amino acids, high energy phosphates, and pHi in the rat brain in vivo: detection by sequential1H and31P NMR spectroscopy. J Neurochem 44:1045–1055.Google Scholar
  19. 19.
    Fitzpatrick, S. M., Hetherington, H. P., Behar, K. L., and Shulman, R. G. 1989. Effects of acute hyperammonemia on cerebral amino acid metabolism and pHi in vivo, measured by1H and31P nuclear magnetic resonance. J Neurochem 52:741–749.Google Scholar
  20. 20.
    Fitzpatrick, S. M., Hetherington, H. P., Behar, K. L., and Shulman, R. G. 1990. The flux from glucose to glutamate in the rat brain in vivo as determined by1H-observed,13C-edited NMR spectroscopy. J Cerebral Blood Flow Metab 10:170–179.Google Scholar
  21. 21.
    Petroff, O. A. C., Prichard, J. W., Ogino, T., and Shulman, R. G. 1988. Proton magnetic resonance spectroscopic studies of agonal carbohydrate metabolism in rabbit brain. Neurology 38:1569–1574.Google Scholar
  22. 22.
    Petroff, O. A. C., Novotny, E. J., Ogino, T., Avvison, M., and Prichard, J. W. 1990. In vivo measurements of ethanol concentration in rabbit brain by1H magnetic resonance spectroscopy. J Neurochem 54:1188–1195.Google Scholar
  23. 23.
    Avison, M. J., Herschkowitz, N., Novotny, E. J., Petroff, O. A. C., Rothman, D. L., Colombo, J. P., Bachmann, C., Shulman, R. G., and Prichard, J. W. 1990. Proton NMR observation of phenylalanine and an aromatic metabolite in the rabbit brain in vivo. Pediatr Res 27:566–570.Google Scholar
  24. 24.
    Young, R. S. K., and Petroff, O. A. C. 1990. Neonatal Seizure: Magnetic resonance spectroscopic findings. Seminars in Perinatology 14:238–247.Google Scholar
  25. 25.
    Young, R. S. K., Petroff, O. A. C., Chen, B., Aquila, W. J., Gore, J. C., and Yates, J. 1991. Preferential utilization of lactate in neonatal brain: in vivo and in vitro proton NMR study. Biol Neonate 59:46–53.Google Scholar
  26. 26.
    Hanstock, C. C., Rothman, D. L., Shulman, R. G., Novotny, E. J., Petroff, O. A. C., and Prichard, J. W. 1990. Measurement of ethanol in the human brain using NMR spectroscopy. J Stud Alcohol 51:104–107.Google Scholar
  27. 27.
    Prichard, J., Rothman, D. L., Novotny, E. J., Petroff, O. A. C., Avison, M. J., Howseman, A., Hanstock, C., and Shulman, R. G. 1989. Photic stimulation raises lactate in human visual cortex. Works in Progress, Soc Magn Reson Med 1:1071.Google Scholar
  28. 28.
    Behar, K. L., Petroff, O. A. C., Prichard, J. W., Alger, J. R., and Shulman, R. G. 1986. Detection of metabolites in rabbit brain by13C-NMR spectroscopy following administration of [1-13C] glucose. Magn Res Med 3:911–920.Google Scholar
  29. 29.
    Sacks, W., Hammer, B., Bigler, R. E., Cowburn, D., Sacks, S., Fleischer, A., and Zanzonico, P. B., et al. 1986. The use of13C-glucose and NMR to study cerebral carbohydrate metabolism in vivo in the rat and the rhesus monkey. Pages 283–302,in Battistin L, Gerstenbrand F. (eds.), PET and NMR: New perspectives in neuroimaging and in clinical neurochemistry, Alan R. Liss, New York.Google Scholar
  30. 30.
    Rosenberg, G. A. 1990. Brain fluids and metabolism. Oxford University Press, New York.Google Scholar
  31. 31.
    Rothman, D. L., Howseman, A. M., Graham, G., Lantos, G., Petroff, O. A. C., Brass, L. M., Fayad, P. B., Shulman, G. I., Prichard, J. W., and Shulman, R. G. 1990. Observation of lactate turnover in infarcted human brain with 1-13C-glucose infusion and1H-MRS. Abstracts, Soc Magn Reson Med 1:107.Google Scholar
  32. 32.
    Rothman, D. L., Behar, K. L., Hetherington, H. P., den Hollander, J. A., Bendall, M. R., Petroff, O. A. C., and Shulman, R. G. 1985.1H observed13C decoupled spectroscopic measurements of lactate and glutamate in the rat brain in vivo. Proc Natl Acad Sci (USA) 82:1633–1637.Google Scholar
  33. 33.
    Novotny, E. J., Ogino, T., Rothman, D. L., Petroff, O. A. C., Prichard, J. W., and Shulman, R. G. 1990. Direct carbon versus proton heteronuclear editing of 2-13C-ethanol in rabbit brain in vivo: A sensitivity comparison. Magn Reson Med 16:431–443.Google Scholar
  34. 34.
    Rothman, D. L., Howseman, A., Novotny, E. J., Hanstock, C. C., Lantos, G., Petroff, O. A. C., Prichard, J. W., and Shulman, R. G. 1989. Feasibility of proton-observed carbon-decoupled editing of glutamate in the human brain. Abstracts, Soc Magn Reson Med 1:372.Google Scholar
  35. 35.
    Rothman, D. L., Novotny, E. J., Shulman, G. I., Howseman, A. M., Mason, G. F., Petroff, O. A. C., Nixon, T., and Hanstock, C. C. 1990. Determination of human brain glutamate turnover times by1H-NMR. Abstracts, Soc Magn Reson Med 1:986.Google Scholar
  36. 36.
    Hanstock, C. C., Rothman, D. L., Jue, T., and Shulman, R. G. 1988. Volume-selected proton spectroscopy in the human brain. J Magn Reson 77:583–588.Google Scholar
  37. 37.
    Hanstock, C. C., Rothman, D. L., Prichard, J. W., Jue, T., and Shulman, R. G. 1988. Spatially localized1H NMR spectra of metabolites in the human brain. Proc Natl Acad Sci (USA) 85:1821–1825.Google Scholar
  38. 38.
    Hanstock, C. C., Rothman, D. L., Howseman, A., Lantos, G., Novotny, E. J., Petroff, O. A. C., Prichard, J. W., and Shulman, R. G. 1989. In vivo determination of NAA concentration in the human brain using the proton aspartyl resonance. Abstracts, Soc Magn Reson Med 1:442.Google Scholar
  39. 39.
    Graham, G. D., Howseman, A. M., Rothman, D. L., Lantos, G., Fayad, P. B., Brass, L. M., Petroff, O. A. C., Shulman, R. G., and Prichard, J. W. 1991. Proton magnetic resonance spectroscopy of metabolites after cerebral infarction in humans. Stroke 22:143.Google Scholar
  40. 40.
    Bradford, H. F. 1986. Chemical Neurobiology. WH Freeman, New York.Google Scholar
  41. 41.
    Whittaker, V. P. 1984. The Synaptosome. Pages 1–39,in Lajtha, A. (ed), Handbook of Neurochemistry, Second Edition, Plenum, New York.Google Scholar
  42. 42.
    Harvey, A. K., Booth, F. G., and Clark, B. 1982. The effects in vitro of hypoglycacmia and recovery from anoxia on synaptosomal metabolism. Biochem J 206:433–439.Google Scholar
  43. 43.
    Kauppinen, R. A., and Nicholls, D. G. 1986. Synaptosomal bioenergetics. The role of glycolysis, pyruvate oxidation and responses to hypoglycaemia. Eur J Biochem 158:159–165.Google Scholar
  44. 44.
    Rafalowska, U., Erecinska, M., and Wilson, D. F. 1980. The effect of acute hypoxia on synaptosomes from rat brain. J Neurochem 34:1160–1165.Google Scholar
  45. 45.
    Kuhr, W. G., van den Berg, C. J., and Korf, J. 1988. In vivo identification and quantitative evaluation of carrier-mediated transport of lactate at the cellular level in the striatum of conscious, freely moving rats. J Cerebral Blood Flow Metab 8:848–856.Google Scholar
  46. 46.
    Petroff, O. A. C., Young, R. S. K., Cowan, B. E., and Novotny, E. J. 1988.1H nuclear magnetic resonance spectroscopy study of neonatal hypoglycemia. Pediatr Neurol 4:31–34.Google Scholar
  47. 47.
    Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.Google Scholar
  48. 48.
    Snedecor, G. W., and Cochran, W. G. 1980. Statistical Methods, Seventh Edition. Iowa State University Press, Ames, Iowa, USA.Google Scholar
  49. 49.
    Gardner, M. J., and Altman, D. G. 1989. Statistics with confidence. British Medical Journal, London.Google Scholar
  50. 50.
    Petroff, O. A. C., Burlina, A. P., Black, J., and Prichard, J. W. 1991. Quantitative analysis of rat synaptosomes and cerebrum using high-resolution1H magnetic resonance spectroscopy. Clin Chim Acta in press.Google Scholar
  51. 51.
    Ljunggren, B., Norberg, K., and Siesjo, B. K. 1974. Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res 77:173–186.Google Scholar
  52. 52.
    Hawkins, R. A., Miller, A. L., Cremer, J. E., and Veech, R. L. 1974. Measurement of the rate of glucose utilization by rat brain in vivo. J Neurochem 23:917–923.Google Scholar
  53. 53.
    Borgstrom, L., Norberg, K., and Siesjo, B. K. 1976. Glucose consumption in rat cerebral cortex in normoxia, hypoxia, and hypercapnia. Acta Physiol Scand 96:569–574.Google Scholar
  54. 54.
    Dagani, F., and Erecinska, M. 1987. Relationships among ATP synthesis, K+ gradients, and neurotransmitter amino acid levels in isolated rat brain synaptosomes. J Neurochem 49:1229–1240.Google Scholar
  55. 55.
    Erecinska, M., Zaleska, M., Nissim, I., Nelson, D., Dagani, F., and Yudkoff, M. 1988. Glucose and synaptosomal glutamate metabolism: Studies with [15N]glutamate. J Neurochem 51:892–902.Google Scholar
  56. 56.
    Rafalowska, U., Erecinska, M., and Wilson, D. F. 1980. Energy metabolism in the rat brain synaptosomes from nembutal-anesthetized and non-anesthetized animals. J Neurochem 34:1380–1386.Google Scholar
  57. 57.
    Petroff, O. A. C., and Prichard, J. W. 1987. Cerebral Intracellular free magnesium during hypoglycemia. Neurology 37(S1):192.Google Scholar
  58. 58.
    Petroff, O. A. C., Prichard, J. W., Behar, K. L., Rothman, D., Alger, J. R., and Shulman, R. G. 1985. Cerebral metabolism in hyper and hypocarbia:31P and1H NMR studies. Neurology 35:1681–1688.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Ognen A. C. Petroff
    • 1
  • Alessandro P. Burlina
  • Joel Black
    • 1
  • James W. Prichard
    • 1
  1. 1.Department of NeurologyYale UniversityNew HavenUSA

Personalised recommendations