Skip to main content
Log in

Primary structure of an agonist binding subunit of the nicotinic acetylcholine receptor from bovine adrenal chromaffin cells

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Activation by acetylcholine of a nicotinic acetylcholine receptor on the membrane of bovine chromaffin cells leads to membrane depolarization and to the subsequent triggering of catecholamine secretion. It is evident that acetylcholine receptors play a central role in the initial phase of the secretion process and, therefore, an extensive characterization of their molecular components and properties is of fundamental interest. With this intention, we have screened bovine adrenal medullary cDNA libraries with a probe coding for a fragment of the rat muscle acetylcholine receptor α subunit. Several cDNA clones were isolated. The longest cDNA had an open reading frame encoding a 495-amino acid protein with a molecular weight of 56,911. The deduced primary structure contains features that indicate that the encoded protein is an α or acetylcholine binding subunit, and, in fact, it manifests significant sequence similarity to previously cloned α subunits. Sequence identity is particularly high with the α3 subunit, which is expressed in the rat pheochromocytoma PC12 cell line and in several brain areas, and consequently, it is considered a component of a neuronal acetylcholine receptor. Accordingly, the present results suggest that the agonist binding subunit of the nicotinic acetylcholine receptor from bovine chromaffin cells is an α3-type subunit, corroborating previous immunological and pharmacological evidence for the presence of a neuronal nicotinic receptor in chromaffin cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

nAChR:

nicotinic acetylcholine receptor

SDS:

sodium dodecyl sulfate

SSC:

0.15 M NaCl and 0.015 M sodium citrate

kb:

kilobases

bp:

base pairs

References

  1. Tomlinson, A., and Coupland, R. E. 1990. Innervation of the adrenal gland. IV. Innervation of the rat adrenal medulla from birth to old age. A descriptive and quantitative morphometric and biochemical study of the innervation of chromaffin cells and adrenal medullary neurons in Wistar rats. J. Anat. 169:209–236.

    PubMed  Google Scholar 

  2. Kidokoro, Y., Miyazaki, S., and Ozawa, S. 1982. Acetylcholine-induced membrane depolarization and potential fluctuations in the rat adrenal chromaffin cell. J. Physiol. 324:203–220.

    PubMed  Google Scholar 

  3. Fenwick, E. M., Marty, A., and Neher, E. 1982. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J. Physiol. 331:577–597.

    PubMed  Google Scholar 

  4. Higgins, L. S., and Berg, D. K. 1988. A desensitized form of neuronal acetylcholine receptor detected by3H-nicotine binding on bovine adrenal chromaffin cells. J. Neurosci. 8:1436–1446.

    PubMed  Google Scholar 

  5. Higgins, L. S., and Berg, D. K. 1987. Immunological identification of a nicotinic acetylcholine receptor on bovine chromaffin cells. J. Neurosci. 7:1792–1798.

    PubMed  Google Scholar 

  6. Trifaró, J. M. 1982. The cultured chromaffin cell: a model for the study of biology and pharmacology of para-neurones. Trends Pharmacol. Sci. 3:389–392.

    Google Scholar 

  7. Bader, M.-F., Georges, E., Mushynski, W. E., and Trifaró, J. M. 1984. Neurofilament protein in cultured chromaffin cells. J. Neurochem. 43:1180–1193.

    PubMed  Google Scholar 

  8. Burgoyne, R. D. 1984. Mechanisms of secretion from adrenal chromaffin cells. Biochim. Biophys. Acta. 779:201–216.

    PubMed  Google Scholar 

  9. Kenisberg, R. L., and Trifaró, J. M. 1980. Presence of a high affinity uptake system for catecholamines in cultured bovine adrenal chromaffin cells. Neuroscience 5:1547–1556.

    PubMed  Google Scholar 

  10. Bader, M.-F., Ciesielski-Treska, J., Thierse, D., Hesketh, J. E., and Aunis, D. 1981. Immunocytochemical study of microtubules in chromaffin cells in culture and evidence that tubulin is not an integral protein of the chromaffin granule membranes. J. Neurochem. 37:917–933.

    PubMed  Google Scholar 

  11. Wada, K., Ballivet, M., Boulter, J., Connolly, J., Wada, E., Deneris, E., Swanson, L. W., Heinemann, S., and Patrick, J. 1988. Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 240:330–334.

    PubMed  Google Scholar 

  12. Boulter, J., Evans, K., Martin, G., Treco, D., Heinemann, S., and Patrick, J. 1986. Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit. Nature 319:368–374.

    PubMed  Google Scholar 

  13. Goldman, D., Deneris, E., Luyten, W., Kochhar, A., Patrick, J., and Heinemann, S. 1987. Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell 48:965–973.

    PubMed  Google Scholar 

  14. Boulter, J., O'Shea-Greenfield, A., Duvoisin, R. M., Connolly, J. G., Wada, E., Jensen, A., Gardner, P. D., Ballivet, M., Deneris, E. S., McKinnon, D., Heinemann, S., and Patrick, J. 1990. α3, α5, and β4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J. Biol. Chem. 265:4472–4482.

    PubMed  Google Scholar 

  15. Couturier, S., Bertrand, D., Matter, J.-M., Hernandez, M.-C., Bertrand, S., Millar, N., Vilera, S., Barkas, T., and Ballivet, M. 1990. A neuronal nicotinic acetylcholine receptor (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BGT. Neuron 5:847–856.

    PubMed  Google Scholar 

  16. Deneris, E. S., Connolly, J., Boulter, J., Wada, E., Wada, K., Swanson, L. W., Patrick, J., and Heinemann, S. 1988. Primary structure and expression of β2: a novel subunit of neuronal nicotinic acetylcholine receptors. Neuron. 1:45–54.

    PubMed  Google Scholar 

  17. Deneris, E. S., Boulter, J., Swanson, L. W., Patrick, J., and Heinemann, S. 1989. β3: a new member of nicotinic acetylcholine receptor gene family is expressed in brain. J. Biol. Chem. 264:6268–6272.

    PubMed  Google Scholar 

  18. Isenberg, K. E., and Meyer, G. E. 1989. Cloning of a putative neuronal nicotinic acetylcholine receptor subunit. J. Neurochem. 52:988–991.

    PubMed  Google Scholar 

  19. Duvoisin, R. M., Deneris, E. S., Patrick, J., and Heinemann, S. 1989. The functional diversity of the neuronal nicotinic acetylcholine receptors is increased by a novel subunit: β4. Neuron. 3:487–496.

    PubMed  Google Scholar 

  20. Nef, P., Oneyser, C., Alliod, C., Couturier, S., and Ballivet, M. 1988. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J. 7:595–601.

    PubMed  Google Scholar 

  21. Schoepfer, R., Whiting, P., Esch, F., Blacher, R., Shimasaki, S., and Lindstrom, J. 1988. cDNA clones coding for the structural subunit of a chicken brain nicotinic acetylcholine receptor. Neuron. 1:241–248.

    PubMed  Google Scholar 

  22. Hermans-Borgmeyer, I., Zopf, D., Ryseck, R.-P., Hovemann, B., Betz, H., and Gundelfinger, E. D. 1986. Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila. EMBO J. 5:1503–1508.

    Google Scholar 

  23. Bossy, B., Ballivet, M., and Spierer, P. 1988. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J. 7:611–618.

    PubMed  Google Scholar 

  24. Ymer, S., Schofield, P. R., Draguhn, A., Werner, P., Köhler, M., and Seeburg, P. H. 1989. GABAA receptor α-subunit heterogeneity: functional expression of cloned cDNAs. EMBO J. 8:1665–1670.

    PubMed  Google Scholar 

  25. Benton, W. D., and Davis, R. W. 1977. Screening λgt recombinant clones by hybridization to single plaques in situ. Science 196:180–182.

    PubMed  Google Scholar 

  26. McGinnis, W., Levine, M. S., Hafen, E., Kuroiwa, A., and Gehring, W. J. 1984. A conserved DNA sequence in homoeotic genes of the Drosophila Antennopedia and Bithorax complexes. Nature 308:428–433.

    PubMed  Google Scholar 

  27. Witzemann, V., Stein, E., Barg, B., Konno, T., Koenen, M., Kues, W., Criado, M., Hofmann, M., and Sakmann, B. 1990. Primary structure and functional expression of the α, β, τ, δ, and ∈-subunits of the acetylcholine receptor from rat muscle. Eur. J. Biochem. 194:437–448.

    PubMed  Google Scholar 

  28. Livett, B. G. 1984. Adrenal medullary chromaffin cells in vitro. Physiol. Rev. 64:1103–1161.

    PubMed  Google Scholar 

  29. Okayama, H., Kawaichi, M., Brownstein, M., Lee, F., Yokota, T. and Arai, K. 1987. High-efficiency cloning of full-length cDNA; construction and screening of cDNA expression libraries for mammalian cells. Methods Enzymol. 154:3–29.

    PubMed  Google Scholar 

  30. Sanger, F., Nicklen, S., and Coulson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74:5463–5467.

    PubMed  Google Scholar 

  31. Li, Q., and Wu, G. 1987. A versatile and simplified non-random strategy for nucleotide sequencing. Gene 56:245–252.

    PubMed  Google Scholar 

  32. Shaw, G., and Karnen, R. 1986. A conserved AU sequence from the 3′ untranslated region of GM-CSF MRNA mediates selective mRNA degradation. Cell 46:659–667.

    PubMed  Google Scholar 

  33. Kozak, M. 1984. Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo. Nature. 308:241–246.

    PubMed  Google Scholar 

  34. Von Heijne, G. 1985. Signal sequences: the limits of variation. J. Mol. Biol. 184:99–105.

    PubMed  Google Scholar 

  35. Kyte, J., and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.

    PubMed  Google Scholar 

  36. Numa, S. 1986. Evolution of ionic channels. Chem. Scripta. 26B:173–178.

    Google Scholar 

  37. Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., and Numa, S. 1985. Location of functional regions of acetylcholine receptor α-subunit by site-directed mutagenesis. Nature. 313:364–369.

    PubMed  Google Scholar 

  38. Criado, M., Sarin, V., Fox, J. L., and Lindstrom, J. 1986. Evidence that the acetylcholine binding site is not formed by the sequence α 127–143 of the acetylcholine receptor. Biochemistry. 25:2839–2846.

    PubMed  Google Scholar 

  39. Huganir, R. L., 1988. Regulation of the nicotinic acetylcholine receptor channel by protein phosphorylation. Current Top. Membr. Transp. 33:147–163.

    Google Scholar 

  40. Huganir, R. L., and Greengard, P. 1990. Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron. 5:555–567.

    PubMed  Google Scholar 

  41. Eusebi, F., Molinaro, M., and Zani, B. M. 1985. Agents that activate protein kinase C reduce acetylcholine sensitivity in cultured myotubes. J. Cell. Biol. 100:1339–1342.

    PubMed  Google Scholar 

  42. Woodgett, J. R., Gould, K. L., and Hunter, T. 1986. Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur. J. Biochem. 161:177–183.

    PubMed  Google Scholar 

  43. Kao, P. N., Dwork, A. J., Kaldany, R. J., Silver, M. L., Wideman, J., Stein, S., and Karlin, A. 1984. Identification of two alpha-subunit half-cystines specifically labeled by an affinity reagent for the acetylcholine binding site. J. Biol. Chem. 259:1162–1165.

    Google Scholar 

  44. McLane, K. E., Wu, X. and Conti-Tronconi, B. M. 1990. Identification of a brain acetylcholine receptor subunit able to bind α-bungarotoxin. J. Biol. Chem. 265:9816–9824.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Criado, M., Alamo, L. & Navarro, A. Primary structure of an agonist binding subunit of the nicotinic acetylcholine receptor from bovine adrenal chromaffin cells. Neurochem Res 17, 281–287 (1992). https://doi.org/10.1007/BF00966671

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966671

Key Words

Navigation