Skip to main content
Log in

Effects of low selenium diets on antioxidant status and MPTP toxicity in mice

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

To investigate the role of chronic oxidative stress in MPTP neurotoxicity, C57BL mice were maintained 6–8 weeks on diets deficient in nutrients essential to cellular antioxidant defenses, selenium (Se) and alpha-tocopherol (vit E), and the effects on tissue antioxidant status and MPTP toxicity were evaluated relative to controls on supplemented diets. Activities of the major antioxidant enzymes, glutathione peroxidase (GPx), catalase, and superoxide dismutase, and levels of malondialdehyde as a marker for oxidative stress, were measured in brain, lung, liver and blood. Caudate depletion of dopamine and its metabolites served as a measure of MPTP neurotoxicity. For mice on the Se deficient diet, levels of the selenoenzyme GPx decreased from 50% in brain to 90% in blood. No compensatory changes in the activities of the other antioxidant enzymes were observed and addition of vit E to the diet did not alter antioxidant enzyme activities or malondialdehyde levels. In animals not treated with MPTP, the Se deficient diet significantly increased malondialdehyde only in liver. No protective effect of the antioxidant supplements against caudate depletion of dopamine and its metabolites was observed. However, malondialdehyde levels were increased in the brains of MPTP treated mice on the low Se diets, suggesting the possibility of secondary oxidative damage to tissues accompanying the destruction of substantia nigra neurons by MPTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, G. 1983. The pathobiology of Parkinson's disease: Biochemical aspects of dopamine neuron senescence. J. Neural. Transm. (Suppl.) 19:89–103.

    Google Scholar 

  2. Clausen, J. 1984. Demential syndromes and the lipid metabolism. Acta Neurol. Scand. 70:345–355.

    PubMed  Google Scholar 

  3. Halliwell B. 1989. Oxidants and the central nervous system: some fundamental questions. Acta Neurol. Scand. 126:23–33.

    Google Scholar 

  4. Halliwell, B. 1987. Oxidants and human disease. FASEB Journal 1:358–364.

    PubMed  Google Scholar 

  5. Gaunt, G. L., and DeDuve, C. 1976. Subcellular distribution of D-amino acid oxidase and catalase in rat brain. J. Neurochem. 26:749–759.

    PubMed  Google Scholar 

  6. Mavelli, I., Rigo, A., Federico, R., Ciriolo, M. R., and Rotillo, G. 1982. Superoxide dismutase, glutathione peroxidase and catalase in developing rat brain. Biochem. J. 204:535–540.

    PubMed  Google Scholar 

  7. Del Maestro, R. and McDonald, W. 1989. Subcellular localization of superoxide dismutase, glutathione peroxidase and catalase in developing rat cerebral cortex. Mech. Aging Devel. 48:15–31.

    Google Scholar 

  8. Conel, F., and Verdetti, J. 1989. Superoxide dismutase, glutathione peroxidase, calatase and lipid peroxidation in the major organs of the aging rats. Free Radic. Biol. Med. 7:54–63.

    Google Scholar 

  9. Maker, H. S., Weiss, C., Silides, D. J., and Cohen, G. 1981. Coupling of dopamine oxidation (mónoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J. Neurochem. 36:589–593.

    PubMed  Google Scholar 

  10. Hothersall, J. S., Greenbaum, A. L., and McLean, P. 1982. The functional significance of the pentose phosphate pathway in synaptosomes: Protection against peroxidative damage by catecholamines and oxidants. J. Neurochem. 39:1325–1332.

    PubMed  Google Scholar 

  11. Ferraro, T. N., Golden, G. T., Demattei, M., Hare, T. A., and Fariello, R. G. 1986. Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on levels of glutathione in the extrapyramidal system of the mouse. Neuropharmac. 25:1071–1074.

    Google Scholar 

  12. Yong, V. W., Perry, T. L., and Krisman, A. A. 1986. Depletion of glutathione in brainstem of mice caused by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is prevented by antioxidant pretreatment. Neurosci. Lett. 63:56–60.

    PubMed  Google Scholar 

  13. Corsini, G. U., Pintus, S., Chiueh, C. C., Weiss, J. F., and Kopin, I. J. 1985. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in mice is enhanced by pretreatment with diethyldithiocarbamate. Eur. J. Pharmacol. 119:127–128.

    PubMed  Google Scholar 

  14. Wagner, G. C., Jarvis, M. F., and Carelli, R. M. 1985. Ascorbic acid reduces the dopamine depletion induced by MPTP. Neuropharmacol. 24:1261–1262.

    Google Scholar 

  15. Perry, T. C., Yong, V. W., Clavier, R. M., Jones, K., Wright, J. M., Foulks, J. G. and Wal, R. A. 1985. Partial protection from the dopaminergic neurotoxin MPTP by four different antioxidants in the mouse. Neurosci. Lett. 60:109–114.

    PubMed  Google Scholar 

  16. Martinovits, G., Melamed, E., Cohen, O., Rosenthal, J., and Uzzan, A. 1986. Systematic administration of antioxidants does not protect mice against dopaminergic toxicity of MPTP. Neurosci. Lett. 69:192–197.

    PubMed  Google Scholar 

  17. Sanchez-Ramos, J. R., Michel, P., Weiner, W. J., and Hefti, F. 1988. Selective destruction of cultured dopaminergic neurons from fetal rat mesencephalon by MPTP: cytochemical and morphological evidence. J. Neurochem. 50:1934–1944.

    PubMed  Google Scholar 

  18. Perry, T. L., Yong, V. W., Jones, K., and Wright, J. M. 1986. Manipulation of glutathione contents fails to alter dopaminergic nigrostriatal neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Neurosci. Let. 70:261–265.

    Google Scholar 

  19. Smith, M. T., Ekstrom, G., Sandy, M. S., and Di Monte, D. 1987. Studies on the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine cytotoxicity in isolated hepatocytes. Life Sci. 23:741–748.

    Google Scholar 

  20. Toyoda, H., Himeno, S-I., and Imura, N. 1989. The regulation of glutathione peroxidase gene expression relevant to species differences and the effects of dietary. Se manipulation. Biochim. Biophys. Acta 1008:301–308.

    PubMed  Google Scholar 

  21. Prohaska, J. R., and Ganther, H. E. 1976. Selenium and glutathione peroxidase in developing rat brain. J. Neurochem. 27:1379–1387.

    PubMed  Google Scholar 

  22. Marklund, S., and Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47:469–474.

    PubMed  Google Scholar 

  23. Claiborne, A. 1985. Catalase activity. Pages 283–284 in Greenwald, R. A. (ed.), Handbook of Methods for Oxygen Radical Research CRC Press, Boca Raton, FL.

    Google Scholar 

  24. Rehncrona, S., Smith, D. S., Akesson, B., Westerberg, E., and Siesjo, B. K. 1980. Peroxidative changes in brain cortical fatty acids and phospholipids as characterized during Fe+3 and ascorbate stimulated lipid peroxidation in vitro. J. Neurochem. 34:1630–1638.

    PubMed  Google Scholar 

  25. Lijano, R. C., and Williams, M. C. 1979. Tetramethyl benzidine, a substitute for benzidine in hemoglobin analysis. J. Lab. Clin. Med. 94:266–276.

    PubMed  Google Scholar 

  26. deMarchena, O., Guarnieri, M., and McKhann 1974. Glutathione peroxidase levels in the brain. J. Neurochem. 22:773–776.

    PubMed  Google Scholar 

  27. Sokoloff, L. 1960. The metabolism of the central nervous system in vivo. Pages 1843–1864,in Field, J., Magoun, H. W. and Hall, V. E. (eds.), Handbook of Physiology-Neurophysiology, Vol. 3, American Physiological Society, Washington, D.C.

    Google Scholar 

  28. Oshino, N., and Chance, B. 1977. Properties of glutathione release observed during reduction of organic hydroperoxide, demethylation of aminopyrine and oxidation of some substances in perfused rat liver, and their implications for the physiological function of catalase. Biochem. J. 162:509–525.

    PubMed  Google Scholar 

  29. Reiter, R., and Wendel, A. 1984. Selenium and drug metabolism II: Independence of glutathione peroxidase and reversibility of hepatic enzyme modulation in deficient mice. Biochem. Pharmacol. 33:1923–1928.

    PubMed  Google Scholar 

  30. Beckett, G. J., MacDougall, D. A., Nicol, F., and Arthur, R. 1989. Inhibition of type I and II iodothyronine deiodinase activity in rat liver, kidney and brain produced by Se deficiency. Biochem. J. 259:887–892.

    PubMed  Google Scholar 

  31. Lawrence, R. A., Sunde, R. A., Schwartz, G. L., and Hoekstra, W. G. 1974. Glutathione peroxidase activity in rat lens and other tissues in relation to dietary Se levels. Exp. Eye Res. 18:563–569.

    PubMed  Google Scholar 

  32. Behne, D., Hilmert, H., Scheid, S., Gessner, H., Kyriakapoulos, A., and Elger, W. 1989. Studies on new selenoproteins and specific Se target tissues. Pages 14–20,in Wendel, A. (ed.), Selenium in Biology and Medicine, Springer-Verlag, Berlin.

    Google Scholar 

  33. Watson, B. D., and Ginsberg, M. D. 1988. Mechanisms of lipid peroxidation potentiated by ischemia in the brain. Pages 81–91,in Halliwell B. (ed.), Oxygen Radicals and Tissue Injury. FASEB, Beltsville, MD.

    Google Scholar 

  34. Reiderer, P., Sofic, E., Rausch, W-D., Schmidt, B., Reynolds, G. P., Jellinger, K., and Youdim, B. H. 1989. Transition metals, ferritin, glutathione and ascorbate in Parkinsonian brains. J. Neurochem. 52:515–520.

    PubMed  Google Scholar 

  35. Rafalowska, U., Liu, G. J., and Floyd, R. A. 1989. Peroxidation induced changes in synaptosomal transport of dopamine and gama-aminobutyric acid Free Radic. Biol. Med. 6:485–492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutphin, M.S., Buckman, T.D. Effects of low selenium diets on antioxidant status and MPTP toxicity in mice. Neurochem Res 16, 1257–1263 (1991). https://doi.org/10.1007/BF00966655

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966655

Key Words

Navigation