Skip to main content
Log in

A review of evidence for GABergic predominance/glutamatergic deficit as a common etiological factor in both schizophrenia and affective psychoses: More support for a continuum hypothesis of “functional” psychosis

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Virtually all antidepressant and antipsychotic drugs, including clozapine, rimcazole and lithium ion, are proconvulsants, and convulsive therapy, using metrazol, a known GABA-A antagonist, as well as electro-convulsive therapy, can be effective in treating both schizophrenia and affective psychoses. Many antidepressant and antipsychotic drugs, including clozapine, as well as some of their metabolites, reverse the inhibitory effect of GABA on35S-TBPS binding, a reliable predictor of GABA-A receptor blockade. A review of relevant literature suggests that 1) “functional” psychoses constitute a continuum of disorders ranging from schizophrenia to affective psychoses with overlap of symptoms, heredity and treatments, 2) a weakening of GABergic inhibitory activity, or potentiation of counterbalancing glutamatergic neurotransmission, in the brain, may be involved in the therapeutic activities of both antidepressant and antipsychotic drugs, and 3) schizophrenia and the affective psychoses may be different expressions of the same underlying defect: GABergic preponderance/glutamatergic deficit. Schizophrenia and affective psychoses share the following: 1) several treatments are effective in both, 2) similar modes of inheritance, 3) congruent seasonal birth excesses, 4) enlarged cerebral ventricles and cerebellar vermian atrophy, 5) dexamethasone non-suppression. Both genetic and environmental factors are involved in both schizophrenia and affective psychoses, and several lines of evidence suggest that important environmental factors are neurotropic pathogens that selectively destroy glutamatergic neurons. One group of genes associated with psychoses may increase vulnerability to attack and destruction, by neurotropic pathogens, of excitatory glutamatergic neurons that counterbalance inhibitory GABergic neurons. A second group of genes may encode subunits of overactive GABA-A receptors, while a third group of genes may encode subunits of hypo-active glutamate receptors. Improved antipsychotic drugs may be found among selective blockers of GABA-A receptor subtypes and/or enhancers of glutamatergic neurotransmission. A mechanism similar to kindling, leading to long-lasting reduction of GABergic inhibition in the brain, may be involved in several treatments of psychoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crow, T. J. 1986. The continuum of psychosis and its implication for the structure of the gene. Br. J. Psychiat. 149:419–429.

    Google Scholar 

  2. Abrams, R., Taylor, M.A., and Gaztanaga, P. 1974. Manic-depressive illness and paranoid schizophrenia. Arch. Gen. Psychiat. 31:640–642.

    PubMed  Google Scholar 

  3. Bartels, S. J., and Drake, R. E. 1988. Depressive symptoms in schizophrenia: comprehensive differential diagnosis. Compr. Psychiat. 29:467–483.

    PubMed  Google Scholar 

  4. Farmer, A. E., McGuffin, P., and Gottesman, I. I. 1987. Twin concordance for DSM-III schizophrenia. Arch. Gen. Psychiat. 44:634–641.

    PubMed  Google Scholar 

  5. Menninger, K. A. 1928. The schizophrenic syndrome as a product of acute infectious disease. Arch. Neural. Psychiat. 20:464–481.

    Google Scholar 

  6. Harrow, M., Grossman, L. S., Silverstein, M. L., and Meltzer, H. Y. 1982. Thought pathology in manic and schizophrenic patients. Arch. Gen. Psychiat. 39:665–671.

    PubMed  Google Scholar 

  7. Kendell, R. E. 1987. Diagnosis and classification of functional psychoses. Br. Med. Bull. 43:499–513.

    PubMed  Google Scholar 

  8. Meduna, L., and Friedman, E. 1939. The convulsive-irritative therapy of psychoses. J. Am. Med. Assoc. 112:501–509.

    Google Scholar 

  9. Kalinowsky, L. B. 1975. The convulsive therapies, Pages 1969–1976, in: A. M. Freedman, H. I. Kaplan, and B. J. Sadock (eds.), Comprehensive Textbook of Psychiatry-II, 2nd Edition, Vol. 2, The Williams & Wilkins Co. Baltimore.

    Google Scholar 

  10. Simmonds, M. A. 1980. Leptazol as a γ-aminobutyric acid antagonist. Br. J. Pharmacol. 70:75P.

    Google Scholar 

  11. Squires, R. F., Saederup, E., Crawley, J. N., Skolnick, P., and Paul, S. M. 1984. Convulsant potencies of tetrazoles are highly correlated with actions on GABA/benzodiazepine/picrotoxin receptor complexes in brain. Life Sciences 35:1439–1444.

    PubMed  Google Scholar 

  12. Endler, N. S. 1988. The origins of electroconvulsive therapy (ECT). Convulsive Ther. 4:5–23.

    Google Scholar 

  13. Green, A. R., and Vincent, N. D. 1987. The effect of repeated electroconvulsive shock on GABA synthesis and release in regions of rat brain. Br. J. Pharmac. 92:19–24.

    Google Scholar 

  14. Kapur, J., Stringer, J. L., and Lothman, E. E. 1989. Evidence that repetitive seizures in the hippocampus cause a lasting reduction of GABergic inhibition. J. Neurophysiol. 61:417–426.

    PubMed  Google Scholar 

  15. Kamphuis, W., Huisman, E., Wadman, W. J., and Lopes da Silva, F. H. 1989. Decrease in GABA immunoreactivity and alteration of GABA metabolism after kindling in the rat hippocampus. Exp. Brain Res. 74:375–386.

    PubMed  Google Scholar 

  16. Hernandez, T. D., Rosen, J. B., and Gallager, D. W. 1990. Long-term changes in sensitivity to GABA in dorsal raphe neurons following amygdala kindling. Brain Research 517:294–300.

    PubMed  Google Scholar 

  17. Morimoto, K., and Goddard, G. V. 1986. Kindling induced changes in EEG recorded during stimulation from the site of stimulation: collapse of GABA-mediated inhibition and onset of rhythmic synchronous burst. Exp. Neurol. 94:571–584.

    PubMed  Google Scholar 

  18. Lewin, E., Peris, J., Bleck, V., Zahniser, N. R., and Harris, R. A. 1989. Chemical kindling decreases GABA-activated chloride channels of mouse brain. Eur. J. Pharmacol. 160:101–106.

    PubMed  Google Scholar 

  19. Loscher, W., and Schwark, W. S. 1985. Evidence for impaired GABAergic activity in the substantia nigra of amygdaloid kindled rats. Brain Research 339:146–150.

    PubMed  Google Scholar 

  20. American Psychiatric Association 1990. The practice of electroconvulsive therapy: recommendations for treatment, training, and privileging, American Psychiatric Press, Washington, D.C.

    Google Scholar 

  21. Gujavarty, K., Greenberg, L. B., and Fink, M. 1987. Electroconvulsive therapy and neuroleptic medication in therapy-resistant positive-symptom psychosis. Convulsive Ther. 3:185–195.

    Google Scholar 

  22. Friedel, R. O. 1986. The combined use of neuroleptics and ECT in drug resistant schizophrenic patients. Psychopharmacol. Bull. 22:928–930.

    PubMed  Google Scholar 

  23. Konig, P., and Glatter-Gotz, U. 1990. Combined electroconvulsive and neuroleptic therapy in schizophrenia refractory to neuroleptics. Schizo. Res. 3:351–354.

    Google Scholar 

  24. Logothetis, J. 1967. Spontaneous epileptic seizures and electroencephalographic changes in the course of phenothiazine therapy. Neurology 17:869–877.

    PubMed  Google Scholar 

  25. Baldessarini, R. J. 1985. Drugs and the treatment of psychiatric disorders, Pages 387–445 in: A. G. Gilman, L. S. Goodman, T. W. Rall, and F. Murad (eds.), The Pharmacological Basis of Therapeutics 7th Edn., Macmillan, New York.

    Google Scholar 

  26. Meldrum, B. 1985. The effect of psychotropic drugs on the seizure threshold: Animal studies, Pages 107–117 in: M. R. Trimble (ed.), The Psychopharmacology of Epilepsy, John Wiley & Sons.

  27. Kugler, J., Lorenzi, E., Spatz, R., and Zimmerman, H. 1979. Drug-induced paroxysmal EEG-activities. Pharmakopsychiat. 12:165–172.

    Google Scholar 

  28. Fink, M., Irwin, P., and Weinhold, P. 1979. EEG profile studies of clozapine in volunteers and psychiatric patients. Pharmakopsychiat 12:184–190.

    Google Scholar 

  29. Koukkou, M., Angst, J., and Zimmer, D. 1979. Paroxysmal EEG activity and psychopathology during the treatment with clozapine. Pharmakopsychiat. 12:175–183.

    Google Scholar 

  30. Lindstrom, L. H. 1988. The effect of long-term treatment with clozapine in schizophrenia: A retrospective study in 96 patients treated with clozapine for up to 13 years. Acta. Psychiat. Scand. 77:524–529.

    PubMed  Google Scholar 

  31. Naber, D., Leppig, M., Grohmann, R., and Hippius, H. 1989. Efficacy and adverse effects of clozapine in the treatment of schizophrenia and tardive dyskinesia—a retrospective study of 387 patients. Psychopharmacol. 99:S73-S76.

    Google Scholar 

  32. Delgado, J. M. R., and DeFeudis, F. V. 1969. Effects of lithium injections into the amygdala and hippocampus of awake monkeys. Exp. Neurol. 25:255–267.

    PubMed  Google Scholar 

  33. Honchar, M. P., Olney, J. W., and Sherman, W. R. 1983. Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 220:323–325.

    PubMed  Google Scholar 

  34. Shopsin, B., and Gershon, S. 1973. Pharmacology-toxicology of the lithium ion, Pages 107–146 in S. Gershon, and B. Shopsin (eds.), Lithium its Role in Psychiatric Research and Treatment. Plenum Press, New York.

    Google Scholar 

  35. Squires, R. F., Casida, J. E., Richardson, M., and Saederup, E. 1983. [35S]t-butyl-bicyclophosphorothionate binds with high affinity to brain-specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol. Pharmacol. 23:326–336.

    PubMed  Google Scholar 

  36. Squires, R. F., and Saederup, E. 1982. γ-Aminobutyric acid receptors modulate cation binding sites coupled to independent benzodiazepine, picrotoxin, and anion binding sites. Mol. Pharmacol. 22:327–334.

    PubMed  Google Scholar 

  37. Squires, R. F., and Saederup, E. 1987. GABA A receptor blockers reverse the inhibitory effect of GABA on brain-specific [35S]-TBPS binding. Brain Research 414:357–364.

    PubMed  Google Scholar 

  38. Squires, R. F., and Saederup, E. 1988: Antidepressants and metabolites that block GABA receptors coupled to [35S]t-butylbicyclophosphorothionate binding sites in rat brain. Brain Research 441:15–22.

    PubMed  Google Scholar 

  39. Squires, R. F., and Saederup, E. 1984. GABA antagonists, antidepressants, central stimulants and other substances reverse the inhibitory effect of GABA on the binding of TBPS to brain specific sites. Soc. Neurosci. Abstr. 10:388.

    Google Scholar 

  40. Squires, R. F., and Saederup, E. 1989. A common mechanism for antipsychotic and antidepressant drug action? FASEB J 3:A593.

    Google Scholar 

  41. Lloyd, K. G., and Dreksler, S. 1979. An analysis of [3H]gamma-amino-butyric acid (GABA) binding in the human brain. Brain Research 163:77–87.

    PubMed  Google Scholar 

  42. Abramets, II. and Komissarov, IV. 1983. Neuroleptics as antagonists of gamma aminobutyric acid. Farmakol. Toksikol. 46:9–13 (in Russ.).

    Google Scholar 

  43. Higashi, H., Inokuchi, H., Nishi, S., Inanaga, K., and Gallagher, J. P. 1981. The effects of neuroleptics on the GABA receptor of cat primary afferent neurons. Brain Research 222:103–117.

    PubMed  Google Scholar 

  44. Yang, J., and Zorumski, C. F. 1989. Trifluoperazine blocks GABA-gated chloride currents in cultured chick spinal cord neurons. J. Neurophysiol. 61:363–373.

    PubMed  Google Scholar 

  45. Zorumski, C. F., and Yang, J. 1988. Non-competitive inhibition of GABA currents by phenothiazines in cultured chick spinal cord and rat hippocampal neurons. Neurosci. Lett. 92:86–91.

    PubMed  Google Scholar 

  46. Theobald, W., Buch, O., Kunz, H. A., Krupp, P., Stenger, E. G., and Heimann, H. 1968. Pharmakologische und experimentalpsychologische untersuchungen mit 2 inhaltsstoffen des fliegenpilzes (Amanita Muscaria). Arzneimit. Forsch. 18:311–315.

    Google Scholar 

  47. Tamminga, C. A., Crayton, J. W., and Chase, T. N. 1978. Muscimol: GABA agonist therapy in schizophrenia. Am. J. Psychiat. 135:746–747.

    PubMed  Google Scholar 

  48. Hoehn-Saric, R. 1983. Effects of THIP on chronic anxiety. Psychopharmacol. 80:338–341.

    Google Scholar 

  49. Meldrum, B. 1982. GABA and acute psychoses. Psychol. Medicine 12:1–5.

    Google Scholar 

  50. Brodie, M. J., and McKee, P. J. W. 1990. Vigabatrin and psychosis. Lancet 335:1279.

    Google Scholar 

  51. Ring, H. A., and Reynolds, E. H. 1990. Vigabatrin and behaviour disturbance. Lancet 335:970.

    Google Scholar 

  52. Sander, J. W., and Hart, Y. M. 1990. Vigabatrin and behaviour disturbances. Lancet 335:57.

    Google Scholar 

  53. Robinson, M. K., Richens, A., and Oxley, R. 1990. Vigabatrin and behaviour disturbances. Lancet 336:504.

    Google Scholar 

  54. Hall, R. C., and Zisook, S. 1981. Paradoxical reactions to benzodiazepines. Br. J. Clin. Pharmacol. 11:99S-104S.

    PubMed  Google Scholar 

  55. Bixler, E. O., Kales, A., Brubaker, B. H., and Kales, J. D. 1987. Adverse reactions to benzodiazepine hypnotics: spontaneous reporting system. Pharmacology 35:286–300.

    PubMed  Google Scholar 

  56. Rall, T. W. 1990. Hypnotics and Sedatives, Ethanol, Page 355 in: A. G. Gilman, T. W. Rall, A. S. Nies, and P. Taylor (eds.) Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed., Pergamon Press, New York.

    Google Scholar 

  57. Hollister, L. E., Bennett, J. L., Kimbell, Jr., I., Savage, C., and Overall, J. E. 1963. Diazepam in newly admitted schizophrenics. Dis. Nerv. Syst. 24:746–750.

    PubMed  Google Scholar 

  58. Dixon, L., Weiden, P. J., Frances, A. J., Sweeney, J. 1989. Alprazolam intolerance in stable schizophrenic outpatients. Psychopharmacol. Bull. 25:213–214.

    PubMed  Google Scholar 

  59. Lydiard, R. B., Laraia, M. T., Ballenger, J. C., and Howell, E. F. 1987. Emergence of depressive symptoms in patients receiving alprazolam for panic disorder. Am. J. Psychiat. 144:664–665.

    PubMed  Google Scholar 

  60. Noyes, R., Jr. DuPont, R. L. Jr., Pecknold, J. C., Rifkin, A., Rubin, R. T., Swinson, R. P., Ballenger, J. C., and Burrows, G. D. 1988. Alprazolam in panic disorder and agoraphobia: results from a multicenter trial. Arch. Gen. Psychiat. 45:423–428.

    PubMed  Google Scholar 

  61. Arana, G. W., Pearlman, C., and Shader, R. I. 1985. Alprazolam-induced mania: two clinical cases. Am. J. Psychiat. 142:368–369.

    PubMed  Google Scholar 

  62. France, R. D., and Krishnan, K. R. R. 1984. Alprazolam-induced manic reaction. Am. J. Psychiat. 141:1127–1128.

    Google Scholar 

  63. Pecknold, J. C., and Fleury, D. 1986. Alprazolam-induced manic episode in two patients with panic disorder. Am. J. Psychiat. 143:652–653.

    PubMed  Google Scholar 

  64. Remick, R. A. 1985. Alprazolam-induced manic switch. J. Clin. Psychiat. 46:406–407.

    Google Scholar 

  65. Strahan, A., Rosenthal, J., Kaswan, M., and Winston, A. 1985. Three case reports of acute paroxysmal excitement associated with alprazolam treatment. Am. J. Psychiat. 142:859–861.

    PubMed  Google Scholar 

  66. Dietch, J. T., and Jennings, R. K. 1988. Aggressive dyscontrol in patients treated with benzodiazepines. J. Clin. Psychiat. 49:184–188.

    Google Scholar 

  67. Gardner, D. L., and Cowdry, R. W. 1985. Alprazolam-induced dyscontrol in borderline personality disorder. Am. J. Psychiat. 142:98–100.

    PubMed  Google Scholar 

  68. Hanlon, T. E., Ota, K. Y., Agallianos, D. D., Berman, S. A., Bethon, G. D., Kobler, F., and Kurland, A. A. 1969. Combined drug treatment of newly hospitalated acutely ill psychiatric patients. Dis. Nerv. Syst. 30:104–116.

    Google Scholar 

  69. Hanlon, T. E., Ota, K. Y., and Kurland, A. A. 1970. Comparative effects of fluphenazine, fluphenazine-chlordiazepoxide and fluphenazine-imipramine. Dis. Nerv. Syst. 31:171–177.

    PubMed  Google Scholar 

  70. Holden, J. M. C., Itil, T. M., Keskiner, A., and Fink, M. 1968. Thioridazine and chlordiazepoxide, alone and combined, in the treatment of chronic schizophrenia. Compr. Psychiat. 9:633–642.

    PubMed  Google Scholar 

  71. Pato, C. N., Wolkowitz, O. M., Rapaport, M., Schulz, S. C., and Pickar, D. 1989. Benzodiazepine augmentation of neuroleptic treatment in patients with schizophrenia. Psychopharmacol. Bull. 25:263–266.

    PubMed  Google Scholar 

  72. Pettinati, H. M., Stephens, S. M., Willis, K. M., and Robin, S. E. 1990. Evidence for less improvement in depression in patients taking benzodiazepines during unilateral ECT. Am. J. Psychiat. 147:1029–1035.

    PubMed  Google Scholar 

  73. van der Kroef, C. 1979: Reactions to triazolam. Lancet ii 526.

    Google Scholar 

  74. Oswald, I. 1989. Triazolam syndrome 10 years on. Lancet ii, 451–452.

    Google Scholar 

  75. Wagner, R. 1990. Class action complaint is based on Halcion's alleged side effects. Psychiatric Times, June p27.

  76. Arana, G. W., Ornsteen, M. L., Kanter, F., Friedman, H. L., Greenblatt, D. J., and Shader, R. I. 1986. The use of benzodiazepines for psychotic disorders: A literature review and preliminary clinical findings. Psychopharmacol. Bull. 22:77–87.

    PubMed  Google Scholar 

  77. Bodkin, J. A. 1990. Emerging uses for high-potency benzodiazepines in psychotic disorders. J. Clin. Psychiat. 51:41–46.

    Google Scholar 

  78. Douyon, R., Angrist, B., Peselow, E., Cooper, T., and Rotrosen, J. 1989. Neuroleptic augmentation with alprazolam: Clinical effects and pharmacokinetic correlates. Am. J. Psychiat. 146:231–234.

    PubMed  Google Scholar 

  79. Wolkowitz, O. M., Breier, A., Doran, A., Kelsoe, J., Lucas, P., Paul, S. M., and Pickar, D. 1988. Alprazolam augmentation of the antipsychotic effects of fluphenazine in schizophrenic patients. Arch. Gen. Psychiat. 45:664–671.

    PubMed  Google Scholar 

  80. Kahn, J. P., Puertollano, M. A., Schane, M. D., and Klein, D. F. 1988. Adjunctive alprazolam for schizophrenia with panic anxiety: clinical observation and pathogenetic implications. Am. J. Psychiat. 145:742–744.

    PubMed  Google Scholar 

  81. Martenyi, F., Harangozo, J., and Mod, L. 1989. Clonazepam for the treatment of stupor in catatonic schizophrenia. Am. J. Psychiat. 146:1230.

    Google Scholar 

  82. Salam, S. A., and Kilzieh, N. 1988. Lorazepam treatment of psychogenic catatonia: An update. J. Clin. Psychiat. 49(Suppl):16–21.

    Google Scholar 

  83. Menza, M. A., and Harris, D. 1989. Benzodiazepines and catatonia: an overview. Biol. Psychiat. 26:842–846.

    PubMed  Google Scholar 

  84. Rosebush, P. I., Hildebrand, A. M., Furlong, B. G., and Mazurek, M. F. 1990. Catatonic syndrome in a general psychiatric inpatient population: frequency, clinical presentation, and response to lorazepam. J. Clin. Psychiat. 51:357–362.

    Google Scholar 

  85. Sachs, G. S. 1990. Use of clonazepam for bipolar affective disorder. J. Clin. Psychiat. 51(Suppl):31–34.

    Google Scholar 

  86. Feighner, J. P., Boyer, W. F., Hendrickson, G. G., Pambakian, R. A., and Doroski, V. S. 1990. A controlled trial of adinazolam versus desipramine in geriatric depression. Int. Clin. Psychopharm. 5:227–232.

    Google Scholar 

  87. Squires, R. F. 1987. Benzodiazepine receptors, Pages 126–127, in: G. Adelman (ed.), Encyclopedia of Neuroscience, Vol. I., Birkhauser, Boston, Basel, Stuttgart.

    Google Scholar 

  88. Birdsall, N. J. M. 1989. Receptor structure: the accelerating impact of molecular biology. TIPS 10:50–52.

    PubMed  Google Scholar 

  89. Levitan, E. S., Schofield, P. R., Burt, D. R., Rhee, L. M., Wisden, W., Kohler, M., Fujita, N., Rodriguez, H. F., Stephenson, A., Darlison, M. G., Barnard, E. A., and Seeburg, P. H. 1988. Structural and functional basis for GABAA receptor heterogeneity. Nature 335:76–79.

    PubMed  Google Scholar 

  90. Luddens, H., Pritchett, D. B., Kohler, M., Killisch, I., Keinanen, K., Monyer, H., Sprengel, R., and Seeburg, P. H. 1990. Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature 346:648–651.

    PubMed  Google Scholar 

  91. Pritchett, D. B., Sontheimer, H., Shivers, B. D., Ymer, S., Kettenmann, H., Schofield, P. R., and Seeburg, P. H. 1989. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585.

    PubMed  Google Scholar 

  92. Pritchett, D. B., Luddens, H., and Seeburg, P. H. 1989. Type I and Type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245:1389–1392.

    PubMed  Google Scholar 

  93. von Blankenfeld, G., Ymer, S., Pritchett, D. B., Sontheimer, H., Ewert, M., Seeburg, P. H., and Kettenmann, H. 1990. Differential benzodiazepine pharmacology of mammalian recombinant GABAA receptors. Neurosci. Lett. 115:269–273.

    PubMed  Google Scholar 

  94. Pritchett, D. B., and Seeburg, P. H. 1990. γ-Aminobutyric AcidA Receptor α5 creates novel type II benzodiazepine receptor pharmacology. J. Neurochem. 54:1802–1804.

    PubMed  Google Scholar 

  95. Nutt, D. J., and Lister, R. G. 1988. Strain differences in response to a benzodiazepine receptor inverse agonist (FG 7142) in mice. Psychopharmacol. 94:435–436.

    Google Scholar 

  96. Little, H. J., and Bichard, A. R. 1984. Differential effects of the benzodiazepine antagonist Ro 15-1788 after “general anaesthetic” doses of benzodiazepines in mice. Br. J. Anaesth. 56:1153–1160.

    PubMed  Google Scholar 

  97. Barr, G. A., and Lithgow, T. 1983. Effect of age on benzodiazepine-induced behavioural convulsions in rats. Nature 302:431–432.

    PubMed  Google Scholar 

  98. Merz, W. A., Alterwain, P., Ballmer, U., Bechelli, L., Capponi, R., Munoz, J. G., Marquez, C., Nestoros, J., Almanzor, L. R., Udabe, R. U., and Versiani, M. 1988. Treatment of paranoid schizophrenia with the partial benzodiazepine agonist, Ro 16-6028. Psychopharmacol. Suppl. 95–96:237.

    Google Scholar 

  99. Haefely, W. 1984. Pharmacological profile of two benzodiazepine partial agonists: Ro 16-6028 and Ro 17-1812. Clin. Neuropharmacol. 7 Suppl 1:670–671.

    Google Scholar 

  100. Weinstein, E. A., Kahn, R. L., Sugarman, L. A., and Linn, L. 1953. The diagnostic use of amobarbital sodium (“amytal sodium”) in brain disease. Am. J. Psychiat. 109:889–894.

    PubMed  Google Scholar 

  101. Sharpless, S. K. 1965. Hypnotics and Sedatives I. The Barbiturates, Pages 105–128 in: Goodman and Gilman (eds.) Pharmacological Basis of Therapeutics, 3rd ed., Macmillan, New York.

    Google Scholar 

  102. Goodman and Gilman 1941. The Pharmacological Basis of Therapeutics, 1st ed. Macmillan, New York.

    Google Scholar 

  103. Sharpless, S. K. 1965. Hypnotics and Sedatives II. Miscellaneous Agents, Pages 129–142 in: Goodman and Gilman (eds.) 3rd edition, Pharmacological Basis of Therapeutics. Macmillan, New York.

    Google Scholar 

  104. Balcar, V. J., Erdo, S. L., Joo, F., Kasa, P., and Wolff, J. R. 1987. Neurochemistry of GABAergic system in cerebral cortex chronically exposed to bromide in vivo. J. Neurochem. 48:167–169.

    PubMed  Google Scholar 

  105. Montoya, G. A., and Riker, W. K. 1982. A study of the actions of bromide on frog sympathetic ganglion. Neuropharmacology 21:581–585.

    PubMed  Google Scholar 

  106. Squires, R. F. 1984. Benzodiazepine receptors, Pages 261–306 in: A. Lajtha (ed.), Handbook of Neurochemistry, 2nd edn., vol. 6, Plenum Press, New York and London.

    Google Scholar 

  107. Kelly, J. S., Krnjevic, K., Morris, M. E., Yim, G. K. W. 1969. Anionic permeability of cortical neurones. Exp. Brain Res. 7:11–31.

    PubMed  Google Scholar 

  108. Lister, R. G., and Nutt, D. J. 1987. Is Ro 15-4513 a specific alcohol antagonist? TINS 10:223–225.

    Google Scholar 

  109. Pertwee, R. G., and Wickens, A. P. 1991. Enhancement by chlordiazepoxide of catalepsy induced in rats by intravenous or intrapallidal injections of enantiomeric cannabinoids. Neuropharmacology 30:237–244.

    PubMed  Google Scholar 

  110. The Merck Manual, 1987, 15th edition, Pages 1480–1481.

  111. Thacore, V. R. 1973. Bhang psychosis. Brit. J. Psychiat. 123:225–229.

    PubMed  Google Scholar 

  112. Hippius, H. 1989. The history of clozapine. Psychopharmacol. 99:S3-S5.

    Google Scholar 

  113. Gross, H., and Langner, E. 1970. Das neuroleptikum 100–129/HF-1854 (clozapin) in der psychiatrie. Int. Pharmacopsychiat. 4:220–230.

    Google Scholar 

  114. Roubicek, J., and Major, I. 1977. EEG profile and behavioral changes after a single dose of clozapine in normals and schizophrenics. Biol. Psychiat. 12:613–633.

    PubMed  Google Scholar 

  115. Harvey, B., Carstens, M., and Taljaard, J. 1990. Lithium modulation of cortical cyclic nucleotides: Evidence for the Yin-Yang hypothesis. Eur. J. Pharmacol. 175:129–136.

    PubMed  Google Scholar 

  116. Ferrendelli, J. A., Blank, A. C., and Gross, R. A. 1980. Relationships between seizure activity and cyclic nucleotide levels in brain. Brain Research 200:93–103.

    PubMed  Google Scholar 

  117. Mattsson, H. 1980. Bicyclic phosphates increase the cyclic GMP level in rat cerebellum, presumably due to reduced GABA inhibition. Brain Research 181:175–184.

    PubMed  Google Scholar 

  118. Mattsson, H., Brandt, K., and Heilbronn, E. 1977. Bicyclic phosphorus esters increase the cyclic GMP level in rat cerebellum. Nature 268:52–53.

    PubMed  Google Scholar 

  119. Serra, M., Concas, A., Salis, M., and Biggio, G. 1983. Increase of cyclic GMP in cerebellum by methyl-6, 7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM). Brain Research 273:347–351.

    PubMed  Google Scholar 

  120. Biggio, G., and Guidotti, A. 1976. Climbing fiber activation and 3,5-cyclic guanosine monophosphate (cGMP) content in cortex and deep nuclei of cerebellum. Brain Research 107:365–373.

    PubMed  Google Scholar 

  121. Foster, G. A., and Roberts, P. J. 1980. Pharmacology of excitatory amino acid receptors mediating the stimulation of rat cerebellar cyclic GMP levelsin vitro. Life Sci. 27:215–221.

    PubMed  Google Scholar 

  122. Foster, G. A., and Roberts, P. J. 1981. Stimulation of rat cerebellar guanosine 3,5-cyclic monophosphate (cyclic GMP) levels: effects of amino acid antagonists. Br. J. Pharmac. 74:723–729.

    Google Scholar 

  123. Lundy, P. M., and Shaw, R. K. 1983. Modification of cholinergically induced convulsive activity and cyclic GMP levels in the CNS. Neuropharmacol. 22:55–63.

    Google Scholar 

  124. Matsuzawa, H., and Nirenberg, M. 1975. Receptor-mediated shifts in cGMP and cAMP levels in neuroblastoma cells. Proc. Nat. Acad. Sci. USA 72:3472–3476.

    PubMed  Google Scholar 

  125. Biggio, G., Brodie, B. B., Costa, E., and Guidotti, A. 1977. Mechanisms by which diazepam, muscimol, and other drugs change the content of cGMP in cerebellar cortex. Proc. Natl. Acad. Sci. USA 74:3592–3596.

    PubMed  Google Scholar 

  126. Delva, N. J., Letemendia, F. J. J. 1982. Lithium treatment in schizophrenia and schizo-affective disorders. Br. J. Psychiat. 141:387–400.

    Google Scholar 

  127. Lerner, Y., Mintzer, Y., and Schestatzky, M. 1988. Lithium combined with haloperidol in schizophrenic patients. Br. J. Psychiat. 153:359–362.

    Google Scholar 

  128. American Psychiatric Association 1987, DSM-III-R.

  129. Planansky, K., and Johnston, R. 1978. Depressive syndrome in schizophrenia. Acta Psychiat. Scand. 57:207–218.

    PubMed  Google Scholar 

  130. Roy, A. 1984. Do neuroleptics cause depression? Biol. Psychiat. 19:777–781.

    PubMed  Google Scholar 

  131. Miles, C. P. 1977. Conditions predisposing to suicide: A review. J. Nerv. & Ment. Dis. 164:231–246.

    Google Scholar 

  132. Whiteford, H. A., Riney, S. J., Savala, R. A., and Csernansky, J. G. 1988. Dexamethasone non-suppression in chronic schizophrenia. Acta Psychiat. Scand. 77:58–62.

    PubMed  Google Scholar 

  133. Kelsoe, J. R., Jr, Cadet, J. L., Pickar, D., and Weinberger, D. R. 1988. Quantitative neuroanatomy in schizophrenia. Arch. Gen. Psychiat. 45:533–541.

    PubMed  Google Scholar 

  134. Nasrallah, H. A. 1991. Neurodevelopmental aspects of bipolar affective disorder. Biol. Psychiat. 29:1–2.

    PubMed  Google Scholar 

  135. Jeste, D. V., Lohr, J. B., and Goodwin, F. K. 1988. Neuroanatomical studies of major affective disorders. Br. J. Psychiat. 153:444–459.

    Google Scholar 

  136. Reveley, A. M., Reveley, M. A., Clifford, C. A., and Murray, R. M. 1982. Cerebral ventricular size in twins discordant for schizophrenia. Lancet 540–541.

  137. Suddath, R. L., Christison, G. W., Torrey, E. F., Casanova, M. F., and Weinberger, D. R. 1990. Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. New Eng. J. Med. 322:789–794.

    PubMed  Google Scholar 

  138. Itil, T. M., Polvan, N., Engin, L., Guthrie, M. B., and Huque, M. F. 1977. Fluotracen (SKF-28175), a new thymo-neuroleptic with rapid action and long-acting properties (quantitative pharmaco-EEG and clinical trials in the development of fluotracen (SKF-28175). Curr. Ther. Res. 21:343–360.

    Google Scholar 

  139. Ravn, J., Scharff, A., and Aaskoven, O. 1980. 20 Jahre Erfahrungen mit chlorprothixen. Pharmakopsychiat. 13:34–40.

    Google Scholar 

  140. Robertson, M. M., and Trimble, M. R. 1981. Neuroleptics as antidepressants. Neuropharmacol. 20:1335–1336.

    Google Scholar 

  141. Wyatt, R. J., Alexander, R. C., Egan, M. F., Kirch, D. G. 1988. Schizophrenia, just the facts, what do we know, how well do we know it? Schizo. Res. 1:3–18.

    Google Scholar 

  142. Kuhn, R. 1958. The treatment of depressive states with G 22355 (imipramine hydrochloride). Am. J. Psychiat. 115:459–464.

    PubMed  Google Scholar 

  143. Martin, J. B. 1989. Molecular genetic studies in the neuropsychiatric disorders. TINS 12:130–137.

    PubMed  Google Scholar 

  144. Belmaker, R. H. 1991. One gene per psychosis? Biol. Psychiat. 29:415–417.

    PubMed  Google Scholar 

  145. Bertelsen, A., Harvald, B., and Hauge, M. 1977. A Danish twin study of manic-depressive disorders. Br. J. Psychiat. 130:330–351.

    Google Scholar 

  146. DeLisi, L. E., and Crow, T. J. 1989. Evidence for a sex chromosome locus for schizophrenia. Schizo. Bull. 15:431–440.

    Google Scholar 

  147. Gershon, E. S., and Rieder, R. O. 1980. Are mania and schizophrenia genetically distinct? Pages 97–109 in: R. H. Belmaker, and H. M. van Praag (eds.), Mania, An Evolving Concept. Spectrum: New York.

  148. Scharfetter, C., and Nusperli, M. 1980. The Group of schizophrenias, schizoaffective psychoses, and affective disorders. Schizophrenia Bull. 6:586–591.

    Google Scholar 

  149. Pope, H. G., Jr., Yurgelun-Todd, D. 1990. Schizophrenic individuals with bi-polar first-degree relatives: Analysis of two pedigrees. J. Clin. Psychiat. 51:97–101.

    Google Scholar 

  150. Schulsinger, F. 1972. Psychopathy: heredity and environment. Int. J. Ment. Health 1:190–206.

    Google Scholar 

  151. Hare, E. H. 1978. Variations in the seasonal distribution of births of psychotic patients in England and Wales. Br. J. Psychiat. 132:155–158.

    Google Scholar 

  152. Hare, E., Price, J., and Slater, E. 1974. Mental disorder and season of birth: A national sample compared with the general population. Br. J. Psychiat. 124:81–86.

    Google Scholar 

  153. Shimura, M., and Miura, T. 1980. Season of birth in mental disorders in Tokyo, Japan, by year of birth, year of admission and age at admission. Acta Psychiat. Scand. 61:21–28.

    PubMed  Google Scholar 

  154. King, D. J., and Cooper, S. J. 1989. Viruses, immunity and mental disorder. Br. J. Psychiat. 154:1–7.

    Google Scholar 

  155. Mednick, S. A., Machon, R. A., Huttunen, M. O., and Bonett, D. 1988. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiat. 45:189–192.

    PubMed  Google Scholar 

  156. Machon, R. A., Mednick, S. A., and Schulsinger, F. 1983. The interaction of seasonality, place of birth, genetic risk and subsequent schizophrenia in a high risk sample. Br. J. Psychiat. 143:383–388.

    Google Scholar 

  157. Mednick, S. A., Parnas, J., and Schulsinger, F. 1987. The Copenhagen high-risk project, 1962–86. Schizophrenia Bull. 13:485–495.

    Google Scholar 

  158. Buckle, V. J., Fujita, N., Ryder-Cook, A. S., Derry, J. M. J., Barnard, P. J., Lebo, R. V., Schofield, P. R., Seeburg, P. H., Bateson, A. N., Darlison, M. G., and Barnard, E. A. 1989. Chromosomal localization of GABAA, receptor subunit genes: relationship to human genetic disease. Neuron 3:647–654.

    PubMed  Google Scholar 

  159. Blazer, D., George, L. K., Landerman, R., Pennybacker, M., Melville, M. L., Woodbury, M., Manton, K. G., Jordan, K., and Locke, B. 1985. Psychiatric disorders, A rural/urban comparison. Arch. Gen. Psychiat. 42:651–656.

    PubMed  Google Scholar 

  160. Kovess, V., Murphy, H. B. M., and Tousignant, M. 1987. Urban-rural comparisons of depressive disorders in French Canada. J. Nerv. & Ment. Dis. 175:457–466.

    Google Scholar 

  161. Clausen, J. A., and Kohn, M. L. 1959. Relation of schizophrenia to the social structure of a small city, Pages 69–94, in: B. Pasamanick (ed.), Epidemiology of Mental Disorder, Amer. Assoc. Advanc. Sci., Washington, D.C.

    Google Scholar 

  162. Clark, R. E. 1949. Psychoses, income, and occupational prestige. Am. J. Sociology 54:433–440.

    Google Scholar 

  163. Maylath, E., Weyerer, S., and Hafner, H. 1989. Spatial concentration of the incidence of treated psychiatric disorders in Mannheim. Acta Psychiat. Scand. 80:650–656.

    PubMed  Google Scholar 

  164. Schroeder, C. W. 1942. Mental disorders in cities. Am. J. Sociol. 48:40–47.

    Google Scholar 

  165. Toru, M., Watanabe, S., Shibuya, H., Nishikawa, T., Noda, K., Mitsushio, H., Ichikawa, H., Kurumaji, A., Takashima, M., Mataga, N., and Ogawa A. 1988. Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Act Psychiat. Scand. 78:121–137.

    Google Scholar 

  166. Kim, J. S., Kornhuber, H. H., Schmid-Burgk, W., and Holzmuller, B. 1980. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett. 20:379–382.

    PubMed  Google Scholar 

  167. Deakin, J. F. W., Slater, P., Simpson, M. D. C., Gilchrist, A. C., Skan, W. J., Royston, M. C., Reynolds, G. P., and Cross, A. J. 1989. Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J. Neurochem. 52:1781–1786.

    PubMed  Google Scholar 

  168. Snyder, S. H. 1980. Phencyclidine. Nature 285:355–356.

    PubMed  Google Scholar 

  169. Sonders, M. S., Keana, J. F. W., and Weber, E. 1988. Phencyclidine and psychotomimetic sigma opiates: recent insights into their biochemical and physiological sites of action. TINS 11:37–40.

    PubMed  Google Scholar 

  170. Anis, N. A., Berry, S. C., Burton, N. R., and Lodge, D. 1983. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br. J. Pharmac. 79:565–575.

    Google Scholar 

  171. Rosen, A. M., Mukherjee, S., and Shinbach, K. 1984. The efficacy of ECT in phencyclidine-induced psychosis. J. Clin. Psychiat. 45:220–222.

    Google Scholar 

  172. Dinwiddie, S. H., Drevets, W. C., and Smith, D. R. 1988. Treatment of phencyclidine-associated psychosis with ECT. Convulsive Ther. 4:230–235.

    Google Scholar 

  173. Wroblewski, J. T., Nicoletti, F., Fadda, E., and Costa, E. 1987. Phencyclidine is a negative allosteric modulator of signal transduction at two subclasses of excitatory amino acid receptors. Proc. Natl. Acad. Sci. USA 84:5068–5072.

    PubMed  Google Scholar 

  174. Danysz, W., Wroblewski, J. T., Brooker, G., and Costa, E. 1989. Modulation of glutamate receptors by phencyclidine and glycine in the rat cerebellum: cGMP increase in vivo. Brain Research 479:270–276.

    PubMed  Google Scholar 

  175. Church, J., Millar, J. D., Jones, M. G., and Lodge, D. 1991. NMDA receptor antagonist effects of the stereoisomers of β-cyclazocine in rats, in vivo and in vitro. Eur. J. Pharmacol. 192:337–342.

    PubMed  Google Scholar 

  176. Klein, M., and Musacchio, J. M. 1989. High affinity dextromethorphan binding sites in guinea pig brain. Effect of sigma ligands and other agents. J. Pharmacol. Exp. Ther. 251:207–215.

    PubMed  Google Scholar 

  177. Holtzman, S. G. 1982. Phencyclidine-like discriminative stimulus properties of opioids in the squirrel monkey. Psychopharmacology 77:295–300.

    PubMed  Google Scholar 

  178. Tam, S. W., and Cook, L. 1984. Opiates and certain antipsychotic drugs mutually inhibit (+)[3H]SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes. Proc. Natl. Acad. Sci. USA 81:5618–5621.

    PubMed  Google Scholar 

  179. Ferris, C. D., Hirsch, D. J., Brooks, B. P., Snowman, A. M., and Snyder, S. H. 1991. [3H]Opipramol labels a novel binding site and receptors in rat brain membranes. Mol. Pharmacol. 39:199–204.

    PubMed  Google Scholar 

  180. Church, J., and Lodge, D. 1990. Cyclazocine and pentazocine as N-methylaspartate antagonists on cat and rat spinal neurons in vivo. J. Pharmacol. Exp. Ther. 253:636–645.

    PubMed  Google Scholar 

  181. Sircar, R., Nichtenhauser, R., Ieni, J. R., and Zukin, S. R. 1986. Characterization and autoradiographic visualization of (+)-[3H]SKF10,047 binding in rat and mouse brain: Further evidence for phencyclidine/“Sigma Opiate” receptor commonality. J. Pharmacol. Exp. Ther. 237:681–688.

    PubMed  Google Scholar 

  182. Snyder, S. H., and Largent, B. L. 1989. Receptor mechanisms in antipsychotic drug action: Focus on sigma receptors. J. Neuropsychiat. 1:7–15.

    Google Scholar 

  183. Karbon, E. W., Naper, K., and Pontecorvo, M. J. 1991. [3H]DTG and [3H] (+)-3-PPP label pharmacologically distinct binding sites in guinea pig brain membranes. Eur. J. Pharmacol. 193:21–27.

    PubMed  Google Scholar 

  184. Boakes, R. J., Bradley, P. B., Briggs, I., and Dray, A. 1970. Antagonism of 5-hydroxytryptamine by LSD 25 in the central nervous system: a possible neuronal basis for the actions of LSD 25. Br. J. Pharmac. 40:202–218.

    Google Scholar 

  185. Muller, D. J. 1971. ECT in LSD psychosis: A report of three cases. Amer. J. Psychiat. 128:351–352.

    PubMed  Google Scholar 

  186. Herndon, R. M., Margolis, G., and Kilham, L. 1971. The synaptic organization of the malformed cerebellum induced by perinatal infection with the feline panleukopenia virus (PLV). J. Neuropathol. Exp. Neurol. 30:196–205.

    PubMed  Google Scholar 

  187. Young, A. B., Oster-Granite, M. L., Herndon, R. M., and Snyder, S. H. 1974. Glutamic acid: selective depletion by viral induced granule cell loss in hamster cerebellum. Brain Research 73:1–13.

    PubMed  Google Scholar 

  188. Feldblum, S., and Ackermann, R. F. 1987. Increased susceptibility to hippocampal and amygdala kindling following intrahippocamal kainic acid. Exp. Neurol. 97:255–269.

    PubMed  Google Scholar 

  189. Mori, N., and Wada, J. A., 1989. Suppression of amygdaloid kindled convulsion following unilateral injection of 2-amino-7-phosphonoheptanoic acid (2-APH) into the substantia innominata of rats. Brain Research. 486:141–146.

    PubMed  Google Scholar 

  190. Leach, M. J., Marden, C. M., Miller, A. A., O'Donnell, R. A., and Weston, S. B. 1985. Changes in cortical amino acids during electrical kindling in rats. Neuropharmacol. 24:937–940.

    Google Scholar 

  191. Ben-Ari, Y., and Represa, A. 1990. Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus. TINS 13:312–318.

    PubMed  Google Scholar 

  192. Cain, D. P. 1987. Kindling by repeated intraperitoneal or intracerebral injection of picrotoxin transfers to electrical kindling. Exp. Neurol. 97:243–254.

    PubMed  Google Scholar 

  193. Uemura, S., and Kimura, H. 1988. Amygdaloid kindling with bicuculline methiodide in rats. Exp. Neurol. 102:346–353.

    PubMed  Google Scholar 

  194. Taylor, S. C., Johnston, A. L., Wilks, L. J., Nicholass, J. M., File, S. E., Little, H. J. 1988. Kindling with the β-carboline FG7142 suggests separation between changes in seizure threshold and anxiety-related behaviour. Neuropsychobiol 19:195–201.

    Google Scholar 

  195. Craig, C. R., and Colasanti, B. K. 1988. A study of pentylenetetrazol kindling in rats and mice. Pharmcol. Biochem. Behav. 31:867–870.

    Google Scholar 

  196. Karler, R., Murphy, V., Calder, L. D., and Turkanis, S. A. 1989. Pentylenetetrazol kindling in mice. Neuropharmacol. 28:775–780.

    Google Scholar 

  197. Croucher, M. J., and Bradford, H. F. 1989. Kindling of full limbic seizures by repeated microinjections of excitatory amino acids into the rat amygdala. Brain Research 501:58–65.

    PubMed  Google Scholar 

  198. Dalkara, T., Saederup, E., Squires, R. F., and Krnjevic, K. 1986. Iontophoretic studies on rat hippocampus with some novel GABA antagonists. Life Sci. 39:415–422.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Squires, R.F., Saederup, E. A review of evidence for GABergic predominance/glutamatergic deficit as a common etiological factor in both schizophrenia and affective psychoses: More support for a continuum hypothesis of “functional” psychosis. Neurochem Res 16, 1099–1111 (1991). https://doi.org/10.1007/BF00966587

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966587

Key Words

Navigation