Siberian Mathematical Journal

, Volume 12, Issue 5, pp 739–749 | Cite as

On the Nekrasov-Nazarov method of solving nonlinear operator equations

  • P. P. Zabreiko
  • B. P. Kats
Article
  • 21 Downloads

Keywords

Operator Equation Nonlinear Operator Nonlinear Operator Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. I. Nekrasov, Exact Theory of Steady Waves on the Surface of a Heavy Fluid [in Russian], Izd. AN SSSR, Moscow (1951).Google Scholar
  2. 2.
    N. N. Nazarov, “Nonlinea integral equations of Hammerstein type,” Trudy SAGU, Tashkent,5, No. 33, 79–84 (1941).Google Scholar
  3. 3.
    K. T. Akhmedov, “Analytical Nekrasov-Nazarov method in nonlinear analysis,” Usp. Matem. Nauk,12, No. 4, 135–153 (1957).Google Scholar
  4. 4.
    V. B. Melamed, “On formal solutions of some nonlinear equation,” Sib. Matem. Zh.,VI, No. 1, 165–177 (1965).Google Scholar
  5. 5.
    V. B. Melamed, “To questions on branched solutions of nonlinear equations,” Matem. Issled., Kishinev,IV, No. 1, (1969).Google Scholar
  6. 6.
    P. P. Zabreiko and B. P. Kats, “On the Nekrasov-Nazarov method of solving nonlinear equations in the case of two-dimensional degeneration,” Trudy Seminara po Funkts. Analizu, Voronezh, No. 11, 73–79 (1968).Google Scholar
  7. 7.
    M. Artin, “On the solution of analytic equations,” Invent. Math.,5, No. 4, 277–291 (1968).Google Scholar
  8. 8.
    M. A. Krasnosel'skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, and V. Ya. Stetsenko, Approximate Solutions of Operator Equations [in Russian], Nauka, Moscow (1969).Google Scholar
  9. 9.
    P. P. Zabreiko and M. A. Krasnosel'skii, “On bifurcation equations,” Trudy Seminara po Funkts. Analizu, Voronezh, No. 11, 80–93 (1968).Google Scholar
  10. 10.
    P. P. Zabreiko and M. A. Krasnosel'skii, “Simple solutions of operator equations,” Probl. Matem. Analiza Slozhnykh Sistem, Voronezh, No. 2, 31–40 (1968).Google Scholar
  11. 11.
    P. P. Rybin, “On the convergence of series obtained in the solution of nonlinear integral equations,” Dokl. Akad. Nauk SSSR,115, No. 3, 458–461 (1957).Google Scholar
  12. 12.
    V. V. Pokornyi and P. P. Rybin, “On the stabilization of the process of seeking formal implicit functions,” Usp. Matem. Nauk,XV, No. 4, 169–172 (1960).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1972

Authors and Affiliations

  • P. P. Zabreiko
  • B. P. Kats

There are no affiliations available

Personalised recommendations