Siberian Mathematical Journal

, Volume 7, Issue 6, pp 1084–1095 | Cite as

lA- and lI-rings

  • M. A. Shatalova
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. A. Andrunakievich, Antisimple and Strongly Idempotent Rings, Izv. Ak. Nauk SSSR, Seriya Matem.,21, No.1, pp.125–144 (1957).Google Scholar
  2. 2.
    V. A. Andrunakievich, Radicals of Associative Rings. I, Matem. Sb.,44, No. 2, pp.175–211 (1958).Google Scholar
  3. 3.
    G. Birkhoff and R. S. Pierce, Lattice-Ordered Rings, An. Acad. Brasil Ci.,28, 41–69 (1956).Google Scholar
  4. 4.
    R. L. Blair, Ideal Lattices and the Structure of Rings, Trans. Amer. Math. Soc.,75, No. 1, 136–153 (1953).Google Scholar
  5. 5.
    R. L. Blair, A Note on f-Regularity in Rings, Proc. Amer. Math. Soc.,6, No.4, 511–515 (1955).Google Scholar
  6. 6.
    B. Brown and N. H. McCoy, Some Theorems on Groups with Applications to Rings Theory, Trans. Amer. Math. Soc.,69, No.2, 302–312 (1950).Google Scholar
  7. 7.
    B. Brown and N. H. McCoy, Radicals and Subdirect Sums, Amer. J. Math.,69, 46–58 (1947).Google Scholar
  8. 8.
    D. G. Johnson, A Structure Theory for a Class of Lattice-Ordered Rings, Acta Math.,104, No.2, 163–215 (1960).Google Scholar
  9. 9.
    N. Jacobson, Structure of Rings [Russian translation], IL, Moscow (1961).Google Scholar
  10. 10.
    A. G. Kurosh, Radical of Rings and Algebras, Matem. Sb.,33, No.1, 13–26 (1953).Google Scholar
  11. 11.
    E. P. Shimbireva, The Theory of Partially Ordered Groups, Matem. Sb.,20, No. 1, pp.145–178 (1947).Google Scholar

Copyright information

© Consultants Bureau 1966

Authors and Affiliations

  • M. A. Shatalova

There are no affiliations available

Personalised recommendations