Neurochemical Research

, Volume 12, Issue 10, pp 851–860 | Cite as

Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber

  • Lawrence R. Williams
Original Articles


The silicone chamber model permits the investigation of the cellular and molecular events underlying successful regeneration of the rat sciatic nerve across a 10 mm gap. When 25 μl chambers are implanted prefilled with phosphate-buffered saline (PBS), it takes 5–7 days before sufficient fibrin matrix (derived from plasma precursors) accumulates naturally to form a complete bridge across the chamber gap; at 1 week postimplantation, cellular migration into the matrix from the nerve stumps is just beginning. The temporal progress of regeneration might be stimulated if a fibrin matrix, conductive to cell migration, was provided to the nerve stumps at or shortly after the time of chamber implantation. To test this hypothesis, chambers were prefilled, at the time of implantation, with different preparations of homologous plasma. A solution of 90% platelet-free plasma dialyzed against PBS (DP) formed a fibrin matrix by 24 hours postimplantation that, like the naturally formed matrix, had a predominantly longitudinal orientation. The temporal progress of regeneration was stimulated in the DP-prefilled chambers; at 17 days postimplantation, the extents of Schwann cell migration and axonal elongation were significantly greater than in the control system. In contrast, prefilling chambers with either non-citrated plasma or DP + calcium resulted in the generation of a matrix within 8 minutes that was composed of randomly oriented fibrin polymers. These matrices significantly retarded the progress of regeneration.

Key Words

Nerve regeneration chamber model fibrin matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez-Buylla, A., and Valinsky, J. E. 1985. Production of plasminogen activator in cultures of superior cervical ganglia and isolated Schwann cells. Proc. Nat Acad. Sci. (USA) 82:3519–3523.Google Scholar
  2. 2.
    Baron-Van Evercooren, A., Kleinman, H. K., Seppa, H. E. J., Rentier, B., and Dubois-Dalcq, M. 1982. Fibronectin promotes rat Schwann cell growth and motility. J. Cell Biol. 93:211–216.Google Scholar
  3. 3.
    Blomback, B., and Okada, M. 1982. Fibrin Gel Structure and clotting time. Thrombosis Res. 25:51–70.Google Scholar
  4. 4.
    Carr Jr., M. E., Shen, L. L., and Hermans, J. 1977. Masslength ratio of fibrin fibers from gel permeation and light scattering. Biopolymers 16:1–15.Google Scholar
  5. 5.
    Clauss, A. 1957. Gerinnungs physiologische schnell Methods zur bestimmung des Fibrinogens. Acta Haematol. 17:237–246.Google Scholar
  6. 6.
    Dejana, E., Lunguino, L. R., Polentarutti, N., Balconi, G., Ryckewaert, J. J., Larrieu, M. J., Donati, M. B., Montouani, A., and Marguerie, G. 1985. Interaction between fibrinogen and cultured endothelial cells. J. Clin. Invest. 75:11–18.Google Scholar
  7. 7.
    Doolittle, R. F. 1981. Fibrinogen and Fibrin. Pages 163–191,in Bloom, A. L., and Thomas, D. P. (eds.), Haemostasis and Thrombosis, Churchill-Livingstone, London, England.Google Scholar
  8. 8.
    Dunn, F. W., Deguchi, K., Goria, J., Soria, C., Lijnen, H. R., Tobelem, G., and Caen, J. 1984. Importance of the interaction between plasminogen and fibrin for plasminogen activation by tissue-type plasminogen activator. Thromb. Res. 36:345–351.Google Scholar
  9. 9.
    Ferry, J. D., and Morrison, P. R. 1947. Preparation and properties of serum and plasma proteins. VII. The conversion of human fibrinogen to fibrin under various conditions. J. Am. Chem. Soc. 69:388–400.Google Scholar
  10. 10.
    Gaffney, P. J., and Whitaker, A. N. 1979. Fibrin crosslinks and lysis rates. Thromb. Res. 14:85–94.Google Scholar
  11. 11.
    Gormensen, J., Fletcher, A. P., Alkjaersig, N., and Sherry, S. 1967. Enzymatic lysis of plasma clots: the influence of fibrin stabilization on lysis rates. Arch. Biochem. Biophys. 120:654–665.Google Scholar
  12. 12.
    Grinnel, F., Feld, M., and Minter, D. 1980. Fibroblast adhesion to fibrinogen and fibrin substrata: Requirement for coldinsoluble globulin. Cell 19:517–525.Google Scholar
  13. 13.
    Guenther, J., Nick, H., and Monard, D. 1985. A glia-derived neurite promoting factor with protease inhibitory activity. EMBO J. 4:1963–1966.Google Scholar
  14. 14.
    Hantgan, R. R., and Hermans, J. 1979. Assembly of fibrin. J. Biol. Chem. 254:11272–11281.Google Scholar
  15. 15.
    Hantgan, R., Fowler, W., Erckson, H., and Hermans, J. 1980. Fibrin assembly: A comparison of electron microscopic and light scattering results. Thromb. Haemostasis. 44:119–124.Google Scholar
  16. 16.
    Jurecka, W., Ammerer, H. P., and Lassmann, H. 1975. Regeneration of a transected peripheral nerve: An autoradiographic and electronmicroscopic study. Acta Neuropath. (Berl.) 32:299–312.Google Scholar
  17. 17.
    Kalderon, N. 1984. Schwann cell proliferation and localized proteolysis: Expression of plasminogen-activator activity predominates in the proliferating cell populations. Proc. Nat. Acad Sci. 81:7216–7220.Google Scholar
  18. 18.
    Kamykowski, G. W., Mosher, D. F., Lorand, L., and Ferry, J. D. 1981. Modification of shear modulus and creep compliance of fibrin clots by fibronectin. Biophys. Chem. 13:25–28.Google Scholar
  19. 19.
    Krystosek, A., and Seeds, N. W. 1984. Peripheral neurons and Schwann cells secrete plasminogen activator. J. Cell Biol. 98:773–776.Google Scholar
  20. 20.
    Longo, F. M., Skaper, S. D., Manthorpe, M., Williams, L. R., Lundborg, G., and Varon, S. 1983. Temporal changes of neuronotrophic activities accumulating in vivo within nerve regeneration chambers. Exp. Neurol. 81:756–769.Google Scholar
  21. 21.
    Longo, G. M., Hayman, E. G., Davis, G. E., Ruoslahti, E., Engvall, E., Manthorpe, M., and Varon, S. 1984. Neurite promoting factors and extracellular matrix components accumulating in vivo within nerve regeneration chambers. Brain Res. 309:105–117.Google Scholar
  22. 22.
    Lorand, L. 1976. Introduction to clotting and lysis in blood plasma. Meth. Enzymol. 45:31–37.Google Scholar
  23. 23.
    Lundborg, G., Dahlin, L. B., Danielsen, N., Gelberman, R. H., Longo, F. M., Powell, H. C., and Varon, S. 1982. Nerve regeneration in silicome chambers: Influence of gap length and of distal stump components. Exp. Neurol. 76:361–375.Google Scholar
  24. 24.
    Madison, R., Da Silva, C. F., and Dikkes, P. 1985. Modification of the microenvironment allows axonal regeneration across a 20 mm nerve gap using entubulation repair. Soc. Neurosci. Abst. 11:1253.Google Scholar
  25. 25.
    Moonen, G., Grau-Wagemans, M. A., and Selak, I. 1982. Plasminogen activator-plasmin system and neuronal migration. Nature, 298:753–755.Google Scholar
  26. 26.
    Mosesson, M. W., and Doolittle, R. F. (eds.). 1983.In Molecular Biology of Fibrinogen and Fibrin, Ann. N.Y. Acad. Sci., Vol. 408.Google Scholar
  27. 27.
    Mosher, D. F. 1980. Fibronectin. Prog. Hemostasis Thromb. 5:111–151.Google Scholar
  28. 28.
    Mosher, D. F. 1975. Cross-linking or cold-insoluble globulin by fibrin-stabilizing factor. J. Biol. Chem. 250:6614–6621.Google Scholar
  29. 29.
    Nemerson, Y., and Esnout, M. P. 1973. Activation of a proteolytic system by a membrane lipoprotein: Mechanism of action of tissue factor. Proc. Nat. Acad. Sci. 70:310–314.Google Scholar
  30. 30.
    Pittman, R. N. 1985. Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons. Dev. Biol. 110:91–101.Google Scholar
  31. 31.
    Reich, E., Rifkin, D. B., and Shaw, E. (eds.) 1975.In Proteases and Biological Control. Cold Spring Harbor Conferences on Cell Proliferation, Vol. 2.Google Scholar
  32. 32.
    Ruoslahti, E., Hayman, E. G., Pierschbacher, M., and Engvall, E. 1982. Fibronectin: Purification, immunological properties, and biological activities. Methods in Enzymol. 82:803–831.Google Scholar
  33. 33.
    Sakata, Y., and Aoki, N. 1982. Significance of cross-linking of α2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J. Clin. Invest. 69:536–545.Google Scholar
  34. 34.
    Salonen, E.-M., Zitting, A., and Vaheri, A. 1984. Laminin interacts with plasminogen and its tissue-type activator. FEBS Lett. 172:29–32.Google Scholar
  35. 35.
    Schleef, R. R., and Birdwelll, C. R. 1982. The effect of fibrin on endothelial cell migration in vitro. Tiss. Cell Culture. 14:629–636.Google Scholar
  36. 36.
    Shah, G. A., Nair, C. H., and Dhall, D. P. 1985. Physiological studies on fibrin network structure. Thromb. Res. 40:181–188.Google Scholar
  37. 37.
    Shen, L. L., Hermans, J., McDonagh, J., McDonagh, R. P., and Carr, M. 1975. Effects of calcium ion and covalent crosslinking on formation and elasticity of fibrin gels. Thrombosis Res. 6:255–265.Google Scholar
  38. 38.
    Steiner, R. F., and Laki, K. 1951. Light Scattering studies on the clotting of fibrinogen. Arch. Biochem. Biophys. 34:24–37.Google Scholar
  39. 39.
    Tamaki, T., and Aoki, N. 1982. Cross-linking of β2 inhibitor to fibrin catalyzed by activated fibrin stabilizing factor. J. Biol. Chem. 257:14767–14772.Google Scholar
  40. 40.
    Weiss, P. 1944. The technology of nerve regeneration: A review. Sutureless tubulation and related methods of nerve repair. J. Neurol. 1:400–450.Google Scholar
  41. 41.
    Westlund, L. E., and Andersson, L. O. 1985. Studies on the influence of reactants and buffer environment on clot lysis induced by human plasminogen activators. Thromb. Res. 37:213–223.Google Scholar
  42. 42.
    Wilf, J., Gladner, J. A., and Minton, A. P. 1985. Acceleration of fibrin gel formation by unrelated proteins. Thromb. Res. 37:681–688.Google Scholar
  43. 43.
    Williams, L. R., Longo, F. M., Powell, H. C., Lundborg, G., and Varon, S. 1983. Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: Parameters for a bioassay. J. Comp. Neurol. 218:460–470.Google Scholar
  44. 44.
    Williams, L. R., Powell, H. C., Lundborg, G., and Varon, S. 1984. Competence of nerve tissue as distal insert promoting nerve regeneration in a silicone chamber. Brain Res. 293:201–211.Google Scholar
  45. 45.
    Williams, L. R., and Varon, S. 1985. Modification of fibrin matrix formationin situ enhances nerve regeneration in silicone chambers. J. Comp. Neurol. 231:209–220.Google Scholar
  46. 46.
    Williams, L. R., and Varon, S. 1986. Experimental manipulations of the microenvironment within a nerve regeneration chamber. In press,in Ruben, R. J., Van De Water, T. R., and Rubel, E. (eds.), Biology of Change in Otolaryngology: Developmental Biology, Plasticity and Compensation and Injury and Repair Mechanisms, Excerpta Medica International Congress Series, Elsevier Pub.Google Scholar
  47. 47.
    Yamada, K. M., and Kennedy, D. W. 1984. Dualistic nature of adhesive protein function: Fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J. Cell Biol. 99:29–36.Google Scholar
  48. 48.
    Yannas, I. V., Orgill, D. P., Silver, J., Norregaard, T. V., Zervas, N. T., and Schoene, W. C. 1985. Polymeric template facilitates regeneration of sciatic nerves across 15-mm gap. Am. Chem. Soc. Abst. 190:PMSE44.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Lawrence R. Williams
    • 1
  1. 1.Department of Neurosciences, School of MedicineUniversity of California San DiegoLa Jolla

Personalised recommendations