Lithuanian Mathematical Journal

, Volume 25, Issue 1, pp 25–35 | Cite as

Central limit theorem for functionals of a linear process

  • L. Giraitis


Limit Theorem Central Limit Central Limit Theorem Linear Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. Bentkus and R. Rudzkis, “Exponential estimates of the distribution of random variables,” Liet. Mat. Rinkinys,20, No. 1, 15–30 (1980).Google Scholar
  2. 2.
    P. Breuer and P. Major, “Central limit theorems for nonlinear functionals of Gaussian fields,” J. Multivar. Anal.,13, 425–441 (1983).Google Scholar
  3. 3.
    R. L. Dobrushin and P. Major, “Noncentral limit theorems for nonlinear functionals of Gaussian fields,” Z. Wahr. Verw. Geb.,50, 27–52 (1979).Google Scholar
  4. 4.
    L. Giraitis and D. Surgailis, “CLT and other limit theorems for functionals of Gaussian processes” (to appear).Google Scholar
  5. 5.
    L. Giraitis, “Limit theorems for local functionals,” in: Abstracts of the 24th Lithuanian Mathematical Society [in Russian], Vilnius (1983), pp. 52, 53.Google Scholar
  6. 6.
    V. V. Gorodetskii, “Invariance principle for functions of stationary related Gaussian variables,” J. Sov. Math.,24, No. 5 (1984).Google Scholar
  7. 7.
    I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Related Variables [in Russian], Nauka, Moscow (1965).Google Scholar
  8. 8.
    V. A. Malyshev, “Cluster expansions in lattice models of the statistical physics of quantum field theory,” Usp. Mat. Nauk,35, No. 2, 3–51 (1980).Google Scholar
  9. 9.
    S. G. Krein (ed.), Functional Analysis. Mathematical Bibliographical Handbook [in Russian], Nauka, Moscow (1972).Google Scholar
  10. 10.
    A. Plikusas, “Multiple Ito integrals,” Liet. Mat. Rinkinys,21, No. 2, 163–173 (1981).Google Scholar
  11. 11.
    M. Rosenblatt, “Independence and dependence,” in: Proc. Fourth Berkeley Symp. Math. Statist. Probab., Berkeley (1961), pp. 431–443.Google Scholar
  12. 12.
    J. Shohat, “The relation of the classical orthogonal polynomials to the polynomials of Appell,” Am. J. Math.,58, 453–464 (1936).Google Scholar
  13. 13.
    T. C. Sun, “Some further results on central limit theorems for nonlinear functions of normal stationary process,” J. Math. Mech.,14, 71–85 (1965).Google Scholar
  14. 14.
    D. Surgailis, “On Poisson multiple stochastic integrals and associated equilibrium Markov processes,” in: Lect. Notes Contr. Inf. Sciences, Vol. 49, Springer-Verlag (1983), pp. 233–248.Google Scholar
  15. 15.
    D. Surgailis, “Zones of attraction of self-similar multiple integrals,” Liet. Mat. Rinkinys,22, No. 3, 185–201 (1982).Google Scholar
  16. 16.
    M. S. Taqqu, “Weak convergence to fractional Brownian motion and to the Rosenblatt process,” Z. Wahr. Verw. Geb.,31, 287–302 (1975).Google Scholar
  17. 17.
    M. S. Taqqu, “Convergence of iterated processes of arbitrary Hermite rank”, Z. Wahr. Verw. Geb.,50, 53–83 (1979).Google Scholar
  18. 18.
    C. S. Withers, “Central limit theorems for dependent variables. I,” Z. Wahr. Verw. Geb.,57, No. 4, 509–535 (1981).Google Scholar
  19. 19.
    L. Giraitis, “Convergence of certain nonlinear transformations of a Gaussian sequence to self-similar processes,” Liet. Mat. Rinkinys,23, No. 1, 57–68 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • L. Giraitis

There are no affiliations available

Personalised recommendations