Siberian Mathematical Journal

, Volume 7, Issue 3, pp 394–403 | Cite as

General method for majorizing the solutions of the Dirichlet problem

  • A. D. Aleksandrov


Dirichlet Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. D. Aleksandrov, Uniqueness conditions and estimates of the solutions of the Dirichlet problem, Vestnik LGU, No. 13, Issue 3, 5–30 (1963).Google Scholar
  2. 2.
    A. D. Aleksandrov, Certain estimates for the Dirichlet problem, DAN SSSR,134, 5, 1001–1004 (1960).Google Scholar
  3. 3.
    I. Ya. Bakel'man, Theory of quasi-linear elliptic equations, Sib. matem. zh.2, 2, 179–186 (1961).Google Scholar
  4. 4.
    A. D. Aleksandrov, Method of the reference image in the investigation of the solutions of boundary problems, Proceedings of the Soviet-American Symposium on Partial Differential Equations, Novosibirsk (1963).Google Scholar
  5. 5.
    A. D. Aleksandrov, Investigations on the principle of the maximum, V, Izv. vyssh. ucheb. zavedenii, No. 5 16–26 (1960).Google Scholar
  6. 6.
    V. G. Maz'ya, Some estimates for solutions of elliptic second-order equations, DAN SSSR,137, 5 1057–1059 (1961).Google Scholar
  7. 7.
    G. Stampacchia, Contributi alla regolarizzazione delle soluzioni dei problemi al contorno [Contributions to the regularization of the solutions of boundary problems], Ann. Scuola Norm. Sup. Pisa,12, 88–92 (1958).Google Scholar
  8. 8.
    H. G. Weinberger, Symmetrization in uniformly elliptic problems, Studies in Mathematical Analysis and Related Topics, University Press, Stanford, 424–428 (1962).Google Scholar
  9. 9.
    M. Frasca, Un problema variazionale per operatori ellittici [A variational problem for elliptic operators], Matematiche,18, 1–11 (1963).Google Scholar
  10. 10.
    S. Saks, Theory of the Integral [Russian translation], IL, Moscow (1949).Google Scholar

Copyright information

© Consultants Bureau 1966

Authors and Affiliations

  • A. D. Aleksandrov

There are no affiliations available

Personalised recommendations