Skip to main content
Log in

Effect of ferric nitrilotriacetate on predominately cortical glial cell cultures

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cultured glial cells were exposed to ferric nitrilotriacetate (Fe-NTA) at varying concentrations. Studies of the exposed glial cells were performed at days 29 and 36 post-conceptional age (culture days 8 and 15). In addition to morphologic studies, biochemical assays including [3H]-flunitrazepam (FLU) specific binding, Ro5-4864-displaceable3H-FLU binding, and protein determinations were performed. At day 29 post-conceptional age, significant decreases in3H-FLU specific binding, Ro5-4864-displaceable3H-FLU binding, and protein determinations were discernible only in the presence of 100 μM Fe-NTA. At day 36 post-conceptional age3H-FLU specific binding was significantly decreased at 20, 60, and 100 μM Fe-NTA concentrations, while Ro5-4864-displaceable3H-FLU binding and protein determinations were significantly reduced at 60 and 100 μM Fe-NTA concentrations. The effects of Fe-NTA exposure appear to be both concentration and duration-of-exposure related. When compared to previously reported neuronal cell culture, studies utilizing3H-FLU specific binding, Ro5-4864-displaceable3H-FLU binding, and protein determinations, glial cells appear to be significantly more resistant to chelated iron exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swaiman, K. F., Smith, S. A., Trock, G. L., and Siddiqui, A. R. 1983. Sea-blue histiocytes, lymphocytic cytosomes, and59Fe-studies in Hallervorden-Spatz syndrome. Neurology 33:301–5.

    PubMed  Google Scholar 

  2. Szanto J., and Gallyas, F. 1966. A study of iron metabolism in neuropsychiatric patients; Hallervorden-Spatz disease. Arch Neurol 14:438–42.

    PubMed  Google Scholar 

  3. Goodman L. 1953. Alzheimer's disease. A clinico-pathologic analysis of twenty-three cases with a theory on pathogenesis. J Nerv Ment Dis 118:97–130.

    PubMed  Google Scholar 

  4. Akelaitis A. J. 1944. Atrophy of basal ganglia in Pick's disease. Arch Neurol Psychiatry 51:27–34.

    Google Scholar 

  5. Earle K. M. 1968. Studies on Parkinson's disease including x-ray fluorescent spectroscopy of formalin fixed brain tissue.. J Neuropathol Exp. Neurol 27:1–14.

    PubMed  Google Scholar 

  6. Lhermitte, J., Kraus W. M., McAlpine D. 1924. Etude des produits de desintegration et des depots du globus pallidus dans un cas de syndrome parkinsonien. Rev Neurol 1:356–61.

    Google Scholar 

  7. Rojas G., Asenjo A., Chiorino, R., Aranda, L., Rocamora, R., donoso, P. 1965. Cellular and subcellular structure of the ventrolateral nucleus of the thalamus in Parkinson disease. Deposits of iron. Confin Neurol 26:362–76.

    PubMed  Google Scholar 

  8. Merritt, H. H., Adams, R. D., Solomon, H. C. 1946. Neurosyphilis. Oxford University Press.

  9. Williams, A., Hoy, T. G., and Jacobs, a. 1982. Cellular proliferation and susceptibility to iron toxicity in iron loaded cell cultures. Scand J Haematol 28:227–32.

    PubMed  Google Scholar 

  10. Jacobs, A., Hoy, T., Humphrys, J., Perera, P. 1978. Iron overload in Chang cell cultures: biochemical and morphological studies. Br J Exp Path 59:489–98.

    Google Scholar 

  11. Bailey-Wood, R., White, G. P., Jacobs, A. 1975. The use of Chang cells cultured in vitro for the investigation of cellular iron metabolism. Br J Exp Path 56:358–62.

    Google Scholar 

  12. White, G. P., Jacobs, A. 1978. Iron uptake by Chang cells from transferrin nitriloacetate and citrate complexes: The effects of iron-loading and chelation with desferrioxamine. Biochim Biophys Acta 543:217–25.

    PubMed  Google Scholar 

  13. Swaiman, K. F., Machen, V. L. 1985. The effect of iron on mammalian cortical neurons in culture. Neurochem Res 10:1261–8.

    PubMed  Google Scholar 

  14. Olson, J. E., Holzman, D. 1980. Respiration in rat cerebral astrocytes from primary culture. J Neurosci Res 5:497–506.

    PubMed  Google Scholar 

  15. Swaiman, K. F., Neale, E. A., Fitzgerald, S., Nelson, P. G., 1982. A method for large scale production of fetal mouse cerebral cortical cultures Dev Brain Res 3:361–9.

    Google Scholar 

  16. Swaiman, K. F., Machen, V. L. 1985. Iron uptake by glial cells. Neurochem Res 12:1635–44.

    Google Scholar 

  17. Stookey, L. L. 1970. A new spectrophotometric reagent of iron. Anal Chem 42:779.

    Google Scholar 

  18. Talwar, D., Sher, P. K. 1987. Benzodiazepine receptor development in murine glial cultures. Dev Neurosce 9:183–9.

    Google Scholar 

  19. Sher, P. K. and Machen, V. L. 1984. Properties of3H-diazepam binding sites on cultured mirine glial cells and neurones. Dev. Brain Res. 14:1–6.

    Google Scholar 

  20. Swaiman, K. F., Machen, V. L. 1989. Effect of ferric nitrilotriacetate on predominately cortical neuronal cell cultures. Neurochem Res 14:683–88.

    PubMed  Google Scholar 

  21. Sher, P. K., and Schrier, B. K. 1982. Benzodiazepine receptor development in cultures of fetal mouse cerebral cortex mimics its development in vivo. Dev Neurosci 5:263–70.

    PubMed  Google Scholar 

  22. Sher, P. K., Shcrier, B. K., Van Putten, D. 1982. An in situ assay for determination of benzodiazepine binding. Dev Neurosci 5:271–7.

    PubMed  Google Scholar 

  23. McCarthy, K. D., Harden, T. K. 1981. Identification of two benzodiazepine binding sites on cells cultured from rat cerebral cortex. J. Pharmac Exp Ther 216:183–91.

    Google Scholar 

  24. Lowry, O. H., Rosebrough, N. F., Farb, A., Randall, R. J. 1951. Protein measurement with Folin phenol reagent. J Biol Chem 193:265–75.

    PubMed  Google Scholar 

  25. Sher, P. K., Neale, E. A., Machen, V. L. 1986. Autoradiographic localization of benzodiazepine receptor binding in dissociated cultures of fetal mouse cerebral cortex. J Neurochem 46:899–904.

    PubMed  Google Scholar 

  26. Espinosa de los Monteros, A., Foucaud, B. 1987. Effect of iron and transferrin on pure oligodendrocytes in culture; characterization of a high-affinity transferrin receptor at different ages. Dev Brain Res 35:123–130.

    Google Scholar 

  27. Griot, C., Vandervelde, M. 1988. Transferrin, carbonic anhydrase C and ferritin in dissociated murine brain cell cultures. J Neuroimmun 18:333–340.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaiman, K.F., Machen, V.L. Effect of ferric nitrilotriacetate on predominately cortical glial cell cultures. Neurochem Res 15, 501–505 (1990). https://doi.org/10.1007/BF00966207

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966207

Key Words

Navigation