Neurochemical Research

, Volume 11, Issue 9, pp 1289–1301 | Cite as

Preparation of a cell-free extract from rat brain which can initiate protein synthesis in vitro

  • James W. Cosgrove
  • Stanley I. Rapoport
Original Articles


A cell-free protein synthesis system, derived from brains of 3 mo-old male Fischer-344 rats, has been characterized. The optimum conditions for amino acid incorporation in the system were 5 mM magnesium ion and 200 mM potassium ion. Incorporation depended on the addition of ATP, GTP, and an enegy-generating system, and was sensitive to addition of the drugs aurintricarboxylic acid and sodium fluoride, inhibitors of initiation of protein synthesis. Both 40S and 80S initiation complexes were labeled in vitro, using [35S]methionine. Such labeling was sensitive to the protein synthesis inhibitors, aurintricarboxylic acid and sodium fluoride. The system, which can initiate protein synthesis, should be of use for examining mechanisms which underlie alterations in rat brain protein synthesis induced by various treatments.


Protein Synthesis Protein Synthesis Inhibitor Sodium Fluoride Initiation Complex Brain Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aoki, K., andSiegel, F. L. 1970. Hyperphenylalaninemia: Disaggregation of brain polysomes in young rats. Science 168:129–130.PubMedGoogle Scholar
  2. 2.
    Roberts, S., andMorelos, B. S. 1976. Role of ribonuclease action in phenylalanine-induced disaggregation of rat cerebral polyribosomes. J. Neurochem. 26:387–400.PubMedGoogle Scholar
  3. 3.
    Siegel, F. L., Aoki, K., andColwell, R. E. 1971. Polyribosome disaggregation and cell-free protein synthesis in preparations from cerebral cortex of hyperphenylalaninemia rats. J. Neurochem. 18:537–547.PubMedGoogle Scholar
  4. 4.
    Cooper, H. K., Zalewska, T., Kawakami, S., Hossman, K. A., andKleiheus, P. 1977. The effect of ischemia and recirculation on protein synthesis in the rat brain. J. Neurochem. 28:929–934.PubMedGoogle Scholar
  5. 5.
    Morimoto, K., Brengman, J., andYanagihara, T. 1978. Further evaluation of polypeptide synthesis in cerebral anoxia, hypoxia and ischemia. J. Neurochem. 31:1277–1282.PubMedGoogle Scholar
  6. 6.
    Dienel, G. A., Pulsinelli, W. A., andDuffy, T. E. 1980. Regional protein syntheis in rat brain following acute hemispheric ischemia. J. Neurochem. 35:1216–1226.PubMedGoogle Scholar
  7. 7.
    Wasterlain, C. G. 1977. Effects of epileptic seizures on brain ribosomes: Mechanism and relationship to cerebral energy metabolism. J. Neurochem. 29:707–716.PubMedGoogle Scholar
  8. 8.
    Wasterlain, C. G. 1972. Breakdown of brain polysomes in status epilepticus. Brain Res. 39:278–284.PubMedGoogle Scholar
  9. 9.
    Wasterlain, C. G. 1974. Brain ribosomes in intracranial hypertension. J. Neurochem. 23:253–259.PubMedGoogle Scholar
  10. 10.
    Millan, N., Murdock, L. L. Bleier, R., andSiegel, F. L. 1979. Effect of acute hyperthermia on polyribosomes, in vivo protein syntheis and ornithine decarboxylase activity in the neonatal rat brain. J. Neurochem. 32:311–317.PubMedGoogle Scholar
  11. 11.
    Weiss, B. F., Wurtman, R. J., andMunro, H. N. 1973. Disaggregation of brain polysomes byl-5-hydroxytryptophan: Mediation by serotonin. Life Sci. 13:411–416.Google Scholar
  12. 12.
    Weiss, B. F., Liebschutz, J. L., Wurtman, R. J., andMunro, H. N. 1975. Participation of dopamine and serotonin receptors in the disaggregation of brain polysomes by L-DOPA and L-5-HTP. J. Neurochem. 24:1191–1195.PubMedGoogle Scholar
  13. 13.
    Weiss, B. F., Munro, H. N., andWurtman, R. J. 1971. L-DOPA: Disaggregation of brain polysomes and elevation of brain tryptophan. Science 173:833–835.PubMedGoogle Scholar
  14. 14.
    Weiss, B. F., Munro, H. N., Ordonez, L. A., andWurtman, R. J. 1972. Dopamine: Mediator of brain polysome disaggregation afterl-DOPA. Science 177:613–617.PubMedGoogle Scholar
  15. 15.
    Roel, L. E., Schwartz, S. A., Weiss, B. F., Munro, H. N. andWurtman, R. J. 1974. In vivo inhibition of rat brain protein synthesis byl-DOPA. J. Neurochem. 23:233–239.PubMedGoogle Scholar
  16. 16.
    Moskowitz, M. A., Rubin, D., Liebschutz, J., Munro, H. N., Nowak Jr., T. S., andWurtman, R. J. 1977. The permissive role of hyperthermia in the disaggregation of brain polysomes byl-DOPA or d-amphetamine. J. Neurochem. 28:779–782.PubMedGoogle Scholar
  17. 17.
    Widelitz, M. M., Coryell, M. R., Widelitz, H., andAvadhani, N. G. 1975. Dissociation of a rat brain polyribosomes in vivo by amphetamines. Brain Res. 100:215–220.PubMedGoogle Scholar
  18. 18.
    Moskowitz, M. A., Weiss, B. F., Lytle, L. D., Munro, H. N., andWurtman, R. J. 1975. d-Amphetamine disaggregates brain polysomes via a dopaminergic mechanism. Proc. Natl. Acad. Sci. USA 72:634–636.Google Scholar
  19. 19.
    Nowak, Jr., T. S., andMunro, H. N. 1977. Inhibition of cell-free protein synthesis initiation by amphetamine: Association with reduction in tRNA aminoacylation. Biochem. Biophys. Res. Commun. 77:1280–1285.PubMedGoogle Scholar
  20. 20.
    Schrama, L. H., Edwards, P. M., andSchotman, P. 1984. Modulation of protein synthesis in a cell-free system derived from rat brain by corticotropin (ACTH), magnesium, and spermine. J. Neurosci. Res 11:67–77.PubMedGoogle Scholar
  21. 21.
    Schotman, P., Van-Heuven-Nolsen, D., andGispen, W. H. 1980. Protein synthesis in cell-free system from rat brain sensitive to ACTH-like peptides. J. Neurochem. 34:1661–1670.PubMedGoogle Scholar
  22. 22.
    Schotman, P., andAllaart, J. 1981. Biphasic modulation by ACTH-like peptides of protein synthesis in a cell-free system from rat brain. J. Neurochem. 37:1349–1352.PubMedGoogle Scholar
  23. 23.
    Jakoubek, B., Hajek, I., andBurlsova, M. 1980. Different effects of chlorpromazine on the synthesis of proteins in cell-free systems of rat cortex, hippocampus, medulla, and cerebellum. Brain Res. 182:242–245.PubMedGoogle Scholar
  24. 24.
    Tewari, S., andNoble, E. P. 1971. Ethanol and brain protein synthesis. Brain Res. 26:469–474.PubMedGoogle Scholar
  25. 25.
    Lindholm, D. B., andKhawaja, J. A. 1979. Alterations in number and activity of cerebral free and membrane-bound ribosomes after prolonged ethanol ingestion by the weanling rat. Neuroscience 4:1007–1013.PubMedGoogle Scholar
  26. 26.
    Fando, J. L., Salinas, M., andWasterlain, C. G. 1980. Age-dependent changes in brain protein synthesis in the rat. Neurochem. Res. 5:373–383.PubMedGoogle Scholar
  27. 27.
    Dwyer, B. E., Fando, J. L., andWasterlain, C. G. 1980. Rat brain protein synthesis declines during postdevelopmental aging. J. Neurochem. 35:746–749.PubMedGoogle Scholar
  28. 28.
    Ekstrom, R., Liu, D. S. H., andRichardson, A. 1980. Changes in brain protein synthesis during the life span of male Fischer rats. Gerontology 26:121–128.PubMedGoogle Scholar
  29. 29.
    Johnson, T. C. 1976. Regulation of protein synthesis during postnatal maturation of the brain. J. Neurochem. 27:17–23.PubMedGoogle Scholar
  30. 30.
    Vargus, R., andCasteneda, M. 1981. Role of elongation factor 1 in the translational control of rodent brain protein synthesis. J. Neurochem. 37:687–694.PubMedGoogle Scholar
  31. 31.
    Dunlop, D. S., van Elden, W., andLajtha, A. 1977. Developmental effects on protein synthesis rates in regions of the CNS in vivo and in vitro. J. Neurochem. 29:939–945.PubMedGoogle Scholar
  32. 32.
    Brown, I. R., Heikkila, J. J., andCosgrove, J. W. 1982. Analysis of protein synthesis in the mammalian brain using LSD and hyperthermia as experimental probes, pages 221–253,in Brown, I. R. (ed.), Molecular Approaches to Neurobiology Academic Press, New York.Google Scholar
  33. 33.
    Cosgrove, J. W., andBrown, I. R. 1984. Effect of intravenous administration of D-lysergic acid diethylamide on initiation of protein synthesis in a cell-free system derived from brain. J. Neurochem. 42:1420–1426.PubMedGoogle Scholar
  34. 34.
    Cosgrove, J. W., andBrown, I. R. 1981. Characterization of an initiating cell-free protein synthesis system derived from rabbit brain. J. Neurochem. 36:1026–1036.PubMedGoogle Scholar
  35. 35.
    Cosgrove, J. W., andRapoport, S. I. 1984. Absene of age-differences in protein synthesis in rat brain as measured with a cell-free system. Abstracts 10: 131.16 Soc. Neurosciences Annual Meeting, Anaheim, CA.Google Scholar
  36. 36.
    Lowry, O. H., Rosebrough, N. J., Farr, A. O., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  37. 37.
    Pelham, H. R. B., andJackson, R. J. 1976. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67:247–256.PubMedGoogle Scholar
  38. 38.
    Pain, V. M., Lewis, J. A., Hervos, P., Henshaw, E. C., andClemens, M. J. 1980. The effects of amino acid starvation on regulation of polypeptide chain initiation in Ehrlich ascites tumor cells. J. Biol. Chem. 255:1486–1491.PubMedGoogle Scholar
  39. 39.
    Darnbrough, C., Legon, S., Hunt, T., andJackson, R. J. 1973. Initiation of protein synthesis: Evidence for messengerRNA-independent binding of methionyl-transfer RNA to the 40S ribosomal subunit. J. Mol. Biol. 76:379–403.PubMedGoogle Scholar
  40. 40.
    Weber, L. A., Hickey, E. D., Maroney, P. A., andBaglioni, C. 1977. Inhibition of protein synthesis by Cl. J. Biol. Chem. 252:4007–4010.PubMedGoogle Scholar
  41. 41.
    Weber, L. A., Ferman, E. R., andBaglioni, C. 1975. A cell-free system from HeLa cells active in initiation of protein synthesis. Biochemistry 14:5315–5321.PubMedGoogle Scholar
  42. 42.
    Stewart, M. L., Grollman, A. P., andHuang, M. T. 1971. Aurintricarboxylic acid: Inhibitior of initiation of protein synthesis. Proc. Natl. Acad. Sci. USA 68:97–101.PubMedGoogle Scholar
  43. 43.
    Mathews, M. B. andKorner, A. 1970, Mammalian cell-free protein synthesis directed by viral ribonucleic acid. Eur. J. Biochem. 17:328–338.PubMedGoogle Scholar
  44. 44.
    Jagus, R., Anderson, W. F., andSafer, B. 1981. The regulation of initiation of mammalian protein synthesis. Prog. Nucl. Acid. Res. Mol. Biol. 25:127–185.Google Scholar
  45. 45.
    Wigle, D. T., andDixon, G. H. 1970. Transient incorporation of methionine at the N-terminus of protamine newly synthesized in trout testis cells. Nature 227:676–680.PubMedGoogle Scholar
  46. 46.
    Kuffer-Gutmann, A., andArnstein, H. R. V. 1973. The presence of N-terminal methionine on nascent protein of rat liver and rabbit reticulocytes and its cleavage during polypeptide-chain elongation. Biochem. J. 134:969–983.PubMedGoogle Scholar
  47. 47.
    Jackson, R., andHunter, T. 1970. Role of methionine in the initiation of haemoglobin synthesis. Nature 227:672–676.PubMedGoogle Scholar
  48. 48.
    Housman, D., Jacobs-Lorena, M., Rajhandary, U. L., andLodish, H. F. 1970. Initiation of haemoglobin synthesis by methionyl-tRNA. Nature 227:913–918.PubMedGoogle Scholar
  49. 49.
    Fresno, M., andVazquez, D. 1979. Initiation of protein syntheiis in eukaryotic systems with native 40S ribosomal subunits: Effects of translation inhibitors. Methods Enzymol. 60:566–577.PubMedGoogle Scholar
  50. 50.
    Dwyer, B., andWasterlain, C. G. 1980. Regulation of the first step of the initiation of brain protein synthesis by guanosine diphosphate. J. Neurochem. 34:1639–1647.PubMedGoogle Scholar
  51. 51.
    Holland, R. I. 1979. Fluoride inhibition of protein synthesis Cell Biol. Internat. Rep. 3:701–705.Google Scholar
  52. 52.
    Godchaux, W., andAtwood, K. C. 1976. Structure and function of initiation complexes which accumulate during inhibition of protein synthesis in the reticulocytes lysate cell-free system. J. Biol. Chem. 250:3443–3450.Google Scholar
  53. 53.
    O'Rourke, J. C., andGodchaux, W. 1975. Fluoride inhibition of the initiation of protein synthesis in the reticulocyte lysate cell-free system. J. Biol. Chem. 250:3443–3450.PubMedGoogle Scholar
  54. 54.
    Kozak, M. 1983. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47:1–45.PubMedGoogle Scholar
  55. 55.
    Kelly, F. J., andJefferson L. S. 1985. Control of peptide-chain initiation in rat skeletal muscle. J. Biol. Chem. 260:6677–6683.PubMedGoogle Scholar
  56. 56.
    Fando, J. L., andWasterlain, C. G. 1980. A simple, reproducible cell-free system for measuring brain protein synthesis. Neurochem. Res. 5:197–207.Google Scholar
  57. 57.
    Goodwin, F., Shafritz, D., andWeissbach, H. 1969. In vitro polypeptide synthesis in brain. Arch. Biochem. Biophys. 130:183–190.PubMedGoogle Scholar
  58. 58.
    Kurland, C. G. 1982. Translational accuracy in vitro. Cell 28:201–202.PubMedGoogle Scholar
  59. 59.
    Wagner, F. G. H., Jelenc, P. C., Ehrenberg, M., andKurland, C. G. 1982. Rate of elongation of polyphenylalanine in vitro. Eur. J. Biochem. 122:193–197.PubMedGoogle Scholar
  60. 60.
    Eisenstein, R. S., andHarper, A. E. 1984. Characterization of a protein synthesis system from rat liver. J. Biol. Chem. 259:9922–9928.PubMedGoogle Scholar
  61. 61.
    Murthy, M. R. V., Couderc, J. L., Vialland, J. L., andDastugue, B. 1983. Role of tissue specific factors in the translation of brain messenger ribonucleic acids in vitro. Neurochem. Internal. 5:385–394.Google Scholar
  62. 62.
    Murthy, M. R. V. 1983. Translation of brain messenger ribonucleic acids in homologous, heterologous, and mixed cell free systems. Neurochem. Internat 5:395–403.Google Scholar
  63. 63.
    Nowak, Jr., T. S., Carty, E. R., Lust, W. D., andPassonneau, J. V. 1984. An in vitro amino acid incorporation method for assessing the status of in vivo protein synthesis. Analyt. Biochem. 136:285–292.PubMedGoogle Scholar
  64. 64.
    Nowak, Jr., T. S., Fried, R. L., Lust, W. D., andPassoneau, J. V. 1985. Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil. J. Neurochem. 44:487–494.PubMedGoogle Scholar
  65. 65.
    Cosgrove, J. W., Clark, B. D., andBrown, I. R. 1981. Effect of intravenous administration of d-lysergic acid diethylamide on subsequent protein synthesis in a cell-free system derived from brain. J. Neurochem. 36:1037–1046.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • James W. Cosgrove
    • 1
  • Stanley I. Rapoport
    • 1
  1. 1.Laboratory of NeurosciencesNational Institute on Aging NIHBethesda

Personalised recommendations