Skip to main content
Log in

Living systems are tonically inhibited, autonomous optimizers, and disinhibition coupled to variability generation is their major organizing principle: Inhibitory command-control at levels of membrane, genome, metabolism, brain, and society

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is proposed that the major organizing principle in living systems is disinhibition coupled to variability generation. Facile traverse of adaptive functional ranges is made possible by activities of inhibitory (attenuating and/or time-delaying) influences. These maintain barriers to physicochemical perturbations, so that interactions between the external environment and living systems produce transient local changes (signals) that are transduced by a variety of devices at hand to release activities within them. Coupling exists between the driving force (forcing function) and the generation of variability (information-processing capacity) among subunits of particular systems, i.e., there is expansible capacity for processing information in relation to demand. Metaphorically, metabolically generated energy is used to wind the biological springs. Hierarchical nesting of inhibitory command-control is discussed at levels of membrane, metabolism, genomic expression, brain function, and internalization of societal prohibitions (conscience).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shepard, R. N. 1987. Toward a universal law of generalization for psychological science. Science 237:1317–1323.

    PubMed  Google Scholar 

  2. Ennis, D. M. 1988. Toward a universal law of generalization. Science 242:944.

    PubMed  Google Scholar 

  3. Thom, R. 1975. Structural Stability and Morphogenesis (translated from the French). W. A. Benjamin, Inc., Reading, MA. 348 pp.

    Google Scholar 

  4. Roberts, E. 1959. Biochemistry and nonempiric contributions to study of mind. Pages 104–108, in Featherstone, R. M., and Simon, A. (eds), A Pharmacological Approach to the Study of the Mind, Charles C. Thomas.

  5. Roberts, E. 1966. Models for correlative thinking about brain, behavior, and biochemistry. Brain Res. 2:109–144.

    Google Scholar 

  6. Roberts, E. 1966. The synapse as a biochemical self-organizing microcybernetic unit. Brain Res. 1:117–166.

    PubMed  Google Scholar 

  7. Roberts, E. and Matthysse, S. 1970. Neurochemistry: At the crossroads of neurobiology. Annu. Rev. Biochem. 39:777–820.

    PubMed  Google Scholar 

  8. Roberts, E. 1972. An hypothesis suggesting that there is a defect in the GABA system in schizophrenia. An essay. Neurosci. Res. Prog. Bull. 10:468–482.

    Google Scholar 

  9. Roberts, E. 1976. Disinhibition as an organizing principle in the nervous system—The role of the GABA system. Application to neurologic and psychiatric disorders. Pages 515–539, in Roberts, E., Chase, T. N., and Tower, D. B. (eds.), GABA in Nervous System Function, Kroc Foundation Series, Vol. 5, Raven Press, New York.

    Google Scholar 

  10. Roberts, E. 1986. GABA: The road to neurotransmitter status. Pages 1–39, in Olsen, R. W. and Venter, J. C. (eds.), Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties, Alan R. Liss, Inc., New York.

    Google Scholar 

  11. Roberts, E. 1986. Failure of GABAergic inhibition: A key to local and global seizures. Adv. Neurol. 44:319–341.

    PubMed  Google Scholar 

  12. Roberts, E. 1986. What do GABA neurons really do? They make possible variability generation in relation to demand. Exp. Neurol. 93:279–290.

    PubMed  Google Scholar 

  13. Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20:130–141.

    Google Scholar 

  14. Rössler, O. E. 1987. Chaos in coupled optimizers. Ann. N. Y. Acad. Sci. 504:229–240.

    PubMed  Google Scholar 

  15. Mandell, A. J. 1983. From intermittency to transitivity in neuropsychobiological flows. Am. J. Physiol. 245:R484-R494.

    PubMed  Google Scholar 

  16. Frölich, H. 1975. The extraordinary dielectric properties of biological materials and the action of enzymes. Proc. Natl. Acad. Sci. U.S.A. 72:4211–4215.

    PubMed  Google Scholar 

  17. Smith, T. F., and Morowitz, H. J. 1982. Between history and physics. J. Mol. Evol. 18:265–282.

    PubMed  Google Scholar 

  18. Cavalier-Smith, T. 1987. The origin of cells: A symbiosis between genes, catalysts, and membranes. In Evolution of Catalytic Function: Cold Spring Harbor Symposia on Quantitative Biology 52:805–824.

  19. Corda, D., Pasternak, C., and Shinitzky, M. 1982. Increase in lipid microviscosity of unilamellar vesicles upon the creation of transmembrane potential. J. Membr. Biol. 65:235–242.

    PubMed  Google Scholar 

  20. Iberall, A. S., and McCulloch, W. S. 1969. The organizing principle of complex living systems. J. Basic Engineering. Transactions of the ASME, 290–294.

  21. Llinas, R. R., and Iberall, A. 1977. A global model of neuronal command-control systems. BioSystems 8:233–235.

    PubMed  Google Scholar 

  22. Filisko, F. E. and Armstrong, W. E. 1988. Electric field dependent fluids. U. S. Patent No. 4,744,914, issued May 17.

  23. Stangroom, J. E. 1983. Electrorheological fluids. Phys. Technol. 14:290–296.

    Google Scholar 

  24. Winslow, W. M. 1949. Induced fibration of suspensions. J. Appl. Phys. 20:1137–1140.

    Google Scholar 

  25. Houslay, M. D., and Stanley, K. K. 1982. Dynamics of Biological Membranes, John Wiley and Sons, New York, 330 pp.

    Google Scholar 

  26. Grinstein, S., and Rothstein, A. 1986. Mechanisms of regulation of the Na+/H+ exchanger. J. Membr. Biol. 90:1–12.

    PubMed  Google Scholar 

  27. Moolenaar, W. H. 1986. Effects of growth factors on intracellular pH regulation. Annu. Rev. Physiol. 48:363–376.

    PubMed  Google Scholar 

  28. Kennedy, M. B. 1989. Regulation of neuronal function by calcium. TINS 12:417–420.

    Google Scholar 

  29. Rink, T. J., and Knight, D. E. 1988. Stimulus-secretion coupling: A perspective highlighting the contributions of Peter Baker. J. Exp. Biol. 139:1–30.

    Google Scholar 

  30. Augustine, G. J., Charlton, M. P., and Smith, S. J. 1987. Calcium action in synaptic transmitter release. Ann. Rev. Neurosci. 10:633–693.

    PubMed  Google Scholar 

  31. Dutar, P., and Nicoll, R. A. 1988. A physiological role for GABAB receptors in the central nervous system. Nature 332:156–158.

    PubMed  Google Scholar 

  32. Wilkin, G. P., Hudson, A. L., Hill, D. R., and Bowery, N. G. 1981. Autoradiographic localization of GABAB receptors in rat cerebellum. Nature 294:584–587.

    PubMed  Google Scholar 

  33. Cordingley, M. G., Riegel, A. T., and Hager, G. L. 1987. Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor in vivo. Cell. 48:261–270.

    PubMed  Google Scholar 

  34. Damm, K., Thompson, C. C., and Evans, R. M. 1989. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339:593–597.

    PubMed  Google Scholar 

  35. Evans, R. M. 1988. The steroid and thyroid hormone receptor superfamily. Science 240:889–895.

    PubMed  Google Scholar 

  36. Schauer, M., Chalepakis, G., Willmann, T., and Beato, M. 1989. Binding of hormone accelerates the kinetics of glucocorticoid and progesterone receptor binding to DNA. Proc. Natl. Acad. Sci. U.S.A. 86:1123–1127.

    PubMed  Google Scholar 

  37. Morgan, J. I., Cohen, D. R., Hempstead, J. L., and Curran, T. 1987. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192–197.

    PubMed  Google Scholar 

  38. Saffen, D. W., Cole, A. J., Worley, P. F., Christy, B. A., Ryder, K., and Baraban, J. M. 1988. Convulsant-induced increase in transcription factor messenger RNAs in rat brain. Proc. Natl. Acad. Sci. U.S.A. 85:7795–7799.

    PubMed  Google Scholar 

  39. Rusak, B., Robertson, H. A., Wisden, W., and Hunt, S. P. 1990. Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248:1237–1240.

    PubMed  Google Scholar 

  40. Martin, D. P., Schmidt, R. E., DiStefano, P. S., Lowry, O. H., Carter, J. G., and Johnson, Jr., E. M. 1988. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J. Cell Biol. 106:829–844.

    PubMed  Google Scholar 

  41. Truman, J. W., Fahrbach, S. E., and Kimura, K. 1990. Hormones and programmed cell death: insights from invertebrate studies. Prog. Brain Res. 86:25–35.

    PubMed  Google Scholar 

  42. Cohen, P. 1988. Protein phosphorylation and hormone action. Proc. R. Soc. Lond B, 234:115–144.

    PubMed  Google Scholar 

  43. Sprang, S. R., Acharya, K. R., Goldsmith, E. J., Stuart, D. I., Varvill, K., Fletterick, R. J., Madsen, N. B., and Johnson, L. N. 1988. Structural changes in glycogen phosphorylase induced by phosphorylation. Nature 336:215–221.

    PubMed  Google Scholar 

  44. Schoenheimer, R. 1942. The Dynamic State of Body Constituents. Harvard University Press, Cambridge, MA. 78 pp.

    Google Scholar 

  45. Ratner, S. 1979. The dynamic state of body proteins. Ann. N. Y. Acad. Sci. 325:189–209.

    Google Scholar 

  46. Roberts, E. and Simonsen, D. G. 1962. Free amino acids in animal tissue. Pages 284–349, in Holden, J. T. (ed.), Amino Acid Pools, Elsevier, Amsterdam.

    Google Scholar 

  47. Goldberg, N. D., Ames, A. III, Gander, J. E., and Walseth, T. F. 1983. Magnitude of increase in retinal cGMP metabolic flux determined by18O incorporation into nucleotide α-phosphoryls corresponds with intensity of photic stimulation. J. Biol. Chem. 258:9213–9219.

    PubMed  Google Scholar 

  48. Goldberg, N. D., and Walseth, T. F. 1985. A second role for second messengers: Uncovering the utility of cyclic nucleotide hydrolysis. Biotechnology 3:235–238.

    Google Scholar 

  49. Ames III, A., Walseth, T. F., Heyman, R. A., Barad, M., Graeff, R. M., and Goldberg, N. D. 1986. Light-induced increases in cGMP metabolic flux correspond with electrical responses of photoreceptors. J. Biol. Chem. 261:13034–13042.

    PubMed  Google Scholar 

  50. Lajtha, A., and Toth, J. 1966. Instability of cerebral proteins. Biochem. Biophys. Res. Commun. 23:294–298.

    PubMed  Google Scholar 

  51. Luria, A. R. 1968. The Mind of a Mnemonist, (translated from the Russian), Basic Books, Inc., New York, 160 pp.

    Google Scholar 

  52. Freeman, W. J. 1986. Petit mal seizure spikes in olfactory bulb and cortex caused by runaway inhibition after exhaustion of excitation. Brain Res. Rev. 11:259–284.

    Google Scholar 

  53. MacVicar, B. A., and Dudek, F. E. 1980. Local synaptic circuits in rat hippocampus: Interactions between pyramidal cells. Brain Res. 184:220–223.

    PubMed  Google Scholar 

  54. Johnston, D., and Brown, T. H. 1981. Giant synaptic potential hypothesis for epileptiform activity. Science 211:294–297.

    PubMed  Google Scholar 

  55. Traub, R. D., and Wong, R. K. S. 1982. Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747.

    PubMed  Google Scholar 

  56. Tsetlin, M. L. 1973. Automaton Theory and Modeling of Biological Systems (translation from the Russian), Academic Press, New York, pp. 178–182.

    Google Scholar 

  57. Freud, S. 1961. Standard Edition of Complete Psychological Works. Vol. 21, Pages 1–145, in Strachey, J. (ed), Hogarth, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eugene Roberts

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, E. Living systems are tonically inhibited, autonomous optimizers, and disinhibition coupled to variability generation is their major organizing principle: Inhibitory command-control at levels of membrane, genome, metabolism, brain, and society. Neurochem Res 16, 409–421 (1991). https://doi.org/10.1007/BF00966104

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966104

Key Words

Navigation