Skip to main content
Log in

Spontaneous generation of selectable variation in the brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Selection models of behavior presuppose “selectable variation”, diversity in the brain that is stable over time. Diversity can arise spontaneously through the mutual interactions of cell assemblies, which are postulated to align or disalign their neighbors into processing modes conforming to or opposite from their own. These processes are similar to magnetization and crystallization. If aligning and disaligning influences are distributed at random, a state resembling a spin glass can arise, where processing modes are highly varied in space but stable in time. If disalignment occurs regularly at the points of a two-dimensional lattice, and elsewhere the interactions are aligning, a pattern emerges with properties remarkably similar to visual orientation columns. These patterns are maintained dynamically, and emerge statistically without detailed genetic specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, E., and Matthysse, S. 1970. Neurochemistry: at the crossroads of neurobiology. Ann. Rev. Biochem. 39:777–820.

    PubMed  Google Scholar 

  2. Edelman, G. M. 1978. Group selection and phasic reentrant signaling: a theory of higher brain function.In Edelman, G. M., and Mountcastle, V. B., The Mindful Brain, M.I.T. Press, Cambridge.

    Google Scholar 

  3. Roberts, E. Living systems are tonically inhibited, autonomous optimizers, and disinhibition coupled to variability generation is their major organizing principle. [This volume]

  4. Freeman, A. S., Meltzer, L. T., and Bunney, B. S. 1985. Firing properties of substantia nigra dopamine neurons in freely moving rats. Life Sciences 36:1983–1994.

    PubMed  Google Scholar 

  5. Grace, A. A., and Bunney, B. S. 1983. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons: 3. Evidence for electrotonic coupling. Neuroscience 10:333–348.

    PubMed  Google Scholar 

  6. Bunney, B. S., Grace, A. A., and Meltzer, L. T. 1984. Midbrain dopaminergic neurons: a new model of their functioning? Pages 92–93,in Racogni, G., Paoletti, R., and Kielholz, P. (eds.), Clinical Neuropharmacology, Vol. 7, Suppl. 1, Raven Press, New York.

    Google Scholar 

  7. Hartline, H. K. 1969. Visual receptors and retinal interaction. Science 164:270–8.

    PubMed  Google Scholar 

  8. Sinai, Ya. G. 1982. Theory of Phase Transitions: Rigorous Results. Pergamon Press, Oxford.

    Google Scholar 

  9. Villain, J. 1977. Two-level systems in a spin-glass model: I. General formalism and two-dimensional model. J. Phys. C 10:4793–4803.

    Google Scholar 

  10. Maletta, H., and Felch, W. 1979. Insulating spin-glass system Eu(x)Sr(1−x)S. Phys. Rev. B 20:1245–60.

    Google Scholar 

  11. Ogielski, A. T., and Morgenstern, I. 1985. Critical behavior of three-dimensional Ising model of spin glass. J. Appl. Phys. 57:3382–5.

    Google Scholar 

  12. Hopfield, J. J. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79:2554–2558.

    PubMed  Google Scholar 

  13. Amit, D. J., Gutfreund, H., and Sompolinsky, H. 1985. Spin-glass models of neural networks. Physical Review A 32:1007–1018.

    PubMed  Google Scholar 

  14. Amit, D. J. 1989. Modeling Brain Function: The World of Attractor Neural Networks. Cambridge University Press, Cambridge.

    Google Scholar 

  15. Horton, J. C., and Hubel, D. H. 1981. Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764.

    PubMed  Google Scholar 

  16. Dobrushin, R. L., and Schlossman, S. B. 1975. Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics. Comm. Math. Phys. 42:31–40 (1975).

    Google Scholar 

  17. Kosterlitz, J. M., and Thouless, D. J. 1973. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6:1181–1203.

    Google Scholar 

  18. Hubel, D. H. and Wiesel, T. N. 1974. Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 158:267–294.

    PubMed  Google Scholar 

  19. Blasdel, G. G., and Salama, G. 1986. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585.

    PubMed  Google Scholar 

  20. Ts'o, D. Y., Frostig, R. D., Lieke, E. E., and Grinvald, A. 1990. Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249:417–420.

    PubMed  Google Scholar 

  21. Swindale, N. V. 1982. A model for the formation of orientation columns. Proc. Roy. Soc. B 215:211–230.

    Google Scholar 

  22. Braitenberg, V. and Braitenberg, C. 1979. Geometry of orientation columns in the visual cortex. Biol. Cybernetics 33:179–186.

    Google Scholar 

  23. Braitenberg, V. 1985. An isotropic network which implicitly defines orientation columns: discussion of an hypothesis. Pages 479–484, in Rose, D., and Dobson, V. G. (eds.), Models of the Visual Cortex, John Wiley and Sons, New York.

    Google Scholar 

  24. Cowan, J. D., and von der Malsburg, C. 1985. A proposed mechanism for the origin and development of iso-orientation columns. Pages 462–472, in Rose, D., and Dobson, V. G. (eds.), Models of the Visual Cortex, John Wiley and Sons, New York.

    Google Scholar 

  25. Linsker, R. 1986. From basic network principles to neural architecture: emergence of orientation columns. Proc. Natl. Acad. Sci. (USA) 83:8779–8783.

    Google Scholar 

  26. Nauta, W. J. H. 1971. The problem of the frontal lobe: a reinterpretation. J. Psychiat. Res. 8:167–187.

    PubMed  Google Scholar 

  27. Kittel, C. 1986. Introduction to Solid State Physics (6th edition), John Wiley and Sons, New York.

    Google Scholar 

  28. Kosterlitz, J. M., and Thouless, D. J. 1978. Two-dimensional physics. Prog. Low Temperature Physics 7B:373–433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eugene Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthysse, S. Spontaneous generation of selectable variation in the brain. Neurochem Res 16, 397–408 (1991). https://doi.org/10.1007/BF00966103

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966103

Key Words

Navigation