Skip to main content
Log in

Anoxic block of GABAergic IPSPs

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In rat hippocampal slices GABAergic IPSPs are very rapidly suppressed by anoxia (in<2 min). Both early (GABAA) and late (GABAB) components are affected. After reoxygenation, the IPSPs recover, but only slowly and not always completely. Iontophoretic applications of GABA or baclofen indicated no major depression of responses during anoxia. It is therefore unlikely that the anoxic suppression of IPSPs is caused by desensitizations of GABA receptors. A more probable explanation is a failure of GABAergic neurons to release GABA from inhibitory nerve terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, E., and Frankel, S. 1950. γ-Aminobutyric acid in brain: its formation from glutamic acid. J. Biol. Chem. 187:55–63.

    PubMed  Google Scholar 

  2. Krnjević, K., and Schwartz, S. 1967. The action of γ-aminobutyric acid on cortical neurones. Exp. Brain Res. 3:320–336.

    PubMed  Google Scholar 

  3. Dreifuss, J. J., Kelly, J. S., and Krnjević, K. 1969. Cortical inhibition and γ-aminobutyric acid. Exp. Brain Res. 9:137–154.

    PubMed  Google Scholar 

  4. Roberts, E. 1976. Immunocytochemistry of the GABA system—a novel approach to an old transmitter. Pages 123–138,in Ferrendelli, J. A., McEwen, B. S., and Snyder, S. H. (eds.) Neurotransmitters, Hormones and Receptors: Novel Approaches, Society of Neuroscience, Bethesda, Maryland.

    Google Scholar 

  5. Fujiwara, H., Higashi, H., Shimoji, K., and Yoshimura, M. 1987. Effects of hypoxia on rat hippocampal neurones in vitro. J. Physiol. 384:131–151.

    PubMed  Google Scholar 

  6. Leblond, J., and Krnjević, K. 1989. Hypoxic changes in hippocampal neurons. J. Neurophysiol. 62:1–14.

    PubMed  Google Scholar 

  7. Inoue, M., Oomura, Y., Yakushiji, T., and Akaike, N. 1986. Intracellular calcium ions decrease the affinity of the GABA receptor. Nature 324:156–158.

    PubMed  Google Scholar 

  8. Akaike, N., Oyama, Y., and Tokutomi, N. 1988. Inhibition of drug-gated chloride currents by calcium influx in frog sensory neurons. Neuroscience Res. 5:557–562.

    Google Scholar 

  9. Stelzer, A., Kay, A. R., and Wong, R. K. S. 1988. GABAA-receptor function in hippocampal cells is maintained by phosphorylation factors. Science 241:339–341.

    PubMed  Google Scholar 

  10. Krnjević, K. 1975. Coupling of neuronal metabolism and electrical activity. Pages 65–78,in Ingvar, D. H., and Lassen, N. A. (eds.), Brain Work: The Coupling of Function, Metabolism and Blood Flow in the Brain, Munsgaard, Copenhagen.

    Google Scholar 

  11. Krnjević, K., and Xu, Y. 1989. Dantrolene suppresses the hyperpolarization or outward current observed during anoxia in hipocampal neurons. Can. J. Physiol. Pharmacol. 67:1602–1604.

    PubMed  Google Scholar 

  12. Duchen, M. R., Valdeolmillos, M., O'Neill, S. C., and Eisner, D. A. 1990. Effects of metabolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurones. J. Physiol. 424:411–426.

    PubMed  Google Scholar 

  13. Fox, S., Krnjević, K., Morris, M. E., Puil, E., and Werman, R. 1978. Action of baclofen on mammalian synaptic transmission. Neuroscience 3:495–515.

    PubMed  Google Scholar 

  14. Bormann, J. 1988. Electrophysiology of GABAA and GABAB receptor subtypes. TINS 11:112–116.

    PubMed  Google Scholar 

  15. Bowery, N.G., Hill, D.R., and Moratalla, R. 1989. Neurochemistry and autoradiography of GABAB receptors in mammalian brain: Second-messenger system(s). Pages 159–172, in Barnard, E. A., and Costa, E. (eds.), Allosteric Modulation of Amino Acid Receptors: Therapeutic Implications, Raven Press Ltd., New York.

    Google Scholar 

  16. Newberry, N.R., and Nicoll, R.A. 1984. A bicuculline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro. J. Physiol. 348:239–254.

    PubMed  Google Scholar 

  17. Lambert, N.A., Harrison, N.L., Kerr, D.I.B., Ong, J., Prager, R.H., and Teyler, T.J. 1989. Blockade of the late IPSP in rat CA1 hippocampal neurons by 2-hydroxy-saclofen. Neurosci. Letts. 107:125–128.

    Google Scholar 

  18. Gallagher, J.P., Nakamura, J., and Shinnick-Gallagher, P. 1983. The effects of temperature, pH and C1-pump inhibitors on GABA responses recorded from cat dorsal root ganglia. Brain Res. 267: 249–259.

    PubMed  Google Scholar 

  19. Krnjević, K., and Walz, W. 1990. Acidosis and blockade of orthodromic responses caused by anoxia in rat hippocampal slices, at different temperatures. J. Physiol. 422:127–144.

    PubMed  Google Scholar 

  20. Stelzer, A., and Wong, R.K.S. 1989. GABAA responses in hippocampal neurons are potentiated by glutamate. Nature 337:170–173.

    PubMed  Google Scholar 

  21. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N.H. 1984. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374.

    PubMed  Google Scholar 

  22. Krnjević, K. and Xu, Y. (1990). Mechanisms underlying anoxic hyperpolarization of hippocampal neurons. Can. J. Physiol. Pharmacol., 68:1609–1613.

    PubMed  Google Scholar 

  23. Cherubini, E., Ben-Ari, Y., and Krnjević, K. 1989. Anoxia produces smaller changes in synaptic transmission, membrane potential, and input resistance in immature rat hippocampus. J. Neurophysiol. 62:882–895.

    PubMed  Google Scholar 

  24. Krnjević, K., and Leblond, J. 1989. Changes in membrane currents of hippocampal neurons evoked by brief anoxia. J. Neurophysiol. 62:15–30.

    PubMed  Google Scholar 

  25. Ben-Ari, Y., and Cherubini, E. 1988. Brief anoxic episodes induce long-lasting changes in synaptic properties of rat CA3 hippocampal neurons. Neurosci. Letts. 90:273–278.

    Google Scholar 

  26. Sloper, J.J., Johnson, P., and Powell, T.P.S. 1980. Selective degeneration of interneurons in the motor cortex of infant monkeys following controlled hypoxia: A possible cause of epilepsy. Brain Res. 198:204–209.

    PubMed  Google Scholar 

  27. Pulsinelli, W.A. 1985. Selective neuronal vulnerability: morphological and molecular characteristics. Prog. Brain Res. 63:29–37.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eugene Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krnjević, K., Xu, Y.Z. & Zhang, L. Anoxic block of GABAergic IPSPs. Neurochem Res 16, 279–284 (1991). https://doi.org/10.1007/BF00966091

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966091

Key Words

Navigation