Lithuanian Mathematical Journal

, Volume 15, Issue 2, pp 201–206 | Cite as

Approximate method for solving a nonstationary matrix Riccati equation

  • A. V. Kibenko
  • Yu. T. Trubnikov


Riccati Equation Approximate Method Matrix Riccati Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley (1967).Google Scholar
  2. 2.
    V. I. Zubov, Lectures on Control Theory [in Russian], Vol. 1, Izd-vo LGU (1972).Google Scholar
  3. 3.
    J. E. Prussing, “A simplified method for solving the matrix Riccati equation,” Int. J. Control,15, 5 (1972).Google Scholar
  4. 4.
    G. G. L. Meyer and J. H. Payne, “An iterative method of solution of the algebraic Riccati equation,” IEEE Trans. Automat. Control,17, 4 (1972).Google Scholar
  5. 5.
    M. M. Vainberg, Variational Methods and the Method of Monotone Operators [in Russian], Nauka (1972).Google Scholar
  6. 6.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. V. Kibenko
  • Yu. T. Trubnikov

There are no affiliations available

Personalised recommendations