Neurochemical Research

, Volume 2, Issue 5, pp 555–579 | Cite as

Carnosine in olfaction

Proton magnetic resonance spectral evidence for tissue-specific carnosine binding sites
  • Charles Eric Brown
  • Frank L. Margolis
  • Thomas H. Williams
  • Ross G. Pitcher
  • George Elgar


The amount and specificity of binding ofL-carnosine (β-alanyl-L-histidine) by crude soluble and particulate fractions of several tissues were investigated with proton magnetic resonance (1HMR) spectrometry. It was found that the particulate fraction of only nasal olfactory mucosa exhibited a specific binding requiring a particular orientation of the carnosine molecule relative to the binding site. This suggests that whatever role carnosine may play in olfaction is expressed within the nasal olfactory mucosa rather than elsewhere in the olfactory pathway. Possible binding of carnosine to carnosinase was observed in the soluble fractions of nasal olfactory mucosa and kidney. However, the bulk of the carnosine present in the nasal olfactory mucosa in vivo probably is not bound within the cells of this tissue as a complex with soluble protein. These observations are of interest because the nasal olfactory mucosa is the neural tissue that has the highest activities of the enzymes catalyzing the synthesis and degradation of carnosine.

The results of this investigation indicate that1HMR spectrometry will prove useful for the measurement of transmitter/receptor recognition. The significance of these results in the general context of measurement of “specific” binding interactions by biological samples is discussed, and a basic description of the application of1HMR spectrometry to these measurements is presented.


Proton Magnetic Resonance High Activity Soluble Protein Biological Sample Specific Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gulewitsch, W., andAmiradzibi, S. 1900. Über das Carnosin, eine neue organische Base des Fleischextractes. Ber. Dtsch. Chem. Ges. 33:1902–1903.Google Scholar
  2. 2.
    Margolis, F. L. 1974. Carnosine in the primary olfactory pathway. Science 184:909–911.Google Scholar
  3. 3.
    Ferriero, D., andMargolis, F. L. 1975. Denervation in the primary olfactory pathway of mice. II. Effects on carnosine and other amine compounds. Brain Res. 94:75–86.Google Scholar
  4. 4.
    Neidle, A., andKandera, J. 1974. Carnosine—an olfactory bulb peptide. Brain Res. 80:359–364.Google Scholar
  5. 5.
    Margolis, F. L. 1975. Biochemical markers of the primary olfactory pathway: A model neural system. Pages 193–246,in Agranoff, B. W. andAprison, M. H. (eds.), Advances in Neurochemistry, Plenum Press, New York.Google Scholar
  6. 6.
    Harding, J., andMargolis, F. L. 1976. Denervation in the primary olfactory pathway of mice. III. Effect on enzymes of carnosine metabolism. Brain Res. 110:351–360.Google Scholar
  7. 7.
    Cuatrecasas, P., andHollenberg, M. D. 1976. Membrane receptors and hormone action. Pages 251–451,in Anfinsen, C. B., Edsall, J. T., andRichards, F. M. (eds.), Advances in Protein Chemistry, Academic Press, New York.Google Scholar
  8. 8.
    Bovey, F. A. 1969. Pages 6–16,in Nuclear Magnetic Resonance Spectroscopy, Academic Press, New York.Google Scholar
  9. 9.
    Fischer, J. J., andJardetzky, O. 1965. Nuclear magnetic relaxation study of intermolecular complexes. The mechanism of penicillin binding to serum albumin. J. Am. Chem. Soc. 87:3237–3244.Google Scholar
  10. 10.
    Jardetzky, O., andWade-Jardetzky, N. G. 1965. On the mechanism of the binding of sulfonamides to bovine serum albumin. Mol. Pharmacol. 1:214–230.Google Scholar
  11. 11.
    Jardetzky, O. 1964. The study of specific molecular interactions by nuclear magnetic relaxation measurements. Adv. Chem. Phys. 7:499–531.Google Scholar
  12. 12.
    Roberts, G. C. K., andJardetzky, O. 1970. Nuclear magnetic resonance spectroscopy of amino acids, peptides and proteins. Pages 447–545,in Anfinsen, C. B., Edsall, J. T., andRichards, F. M. (eds.), Advances in Protein Chemistry, Vol. 24, Academic Press, New York.Google Scholar
  13. 13.
    Mildvan, A. S., andEngle, J. L. 1972. Nuclear relaxation measurements of water protons and other ligands. Pages 654–682,in Hirs, C. H. W., andTimasheff, S. N. (eds.), Methods in Enzymology, Vol. XXVI, Academic Press, New York.Google Scholar
  14. 14.
    Markley, J. L. 1975. Observation of histidine residues in proteins by means of nuclear magnetic resonance spectroscopy. Acc. Chem. Res. 8:70–80.Google Scholar
  15. 15.
    Martin, R. B., andMathur, R. 1965. Analysis of proton magnetic resonance spectra of cysteine and histidine and derivatives. Conformational Equilibria. J. Am. Chem. Soc. 87:1065–1070.Google Scholar
  16. 16.
    Pachler, K. G. R. 1964. Nuclear magnetic resonance study of some α-amino acids. II. Rotational isomerism. Spectrochim. Acta 20:581–587.Google Scholar
  17. 17.
    Barrans, Y., Bellocq, A. M., Cotrait, M., andRichard, H. 1976. Structure cristalline et conformation en solution aqueuse de la carnosine (β-alanyl-L-histidine). J. Mol. Struct. 30:225–242.Google Scholar
  18. 18.
    Drake, E. N., andBrown, C. E. 1977. Application of NMR to biochemical kinetics. J. Chem. Ed. 54:124–127.Google Scholar
  19. 19.
    Margolis, F. L., Roberts, N., Ferriero, D., andFeldman, J. 1974. Denervation in the primary olfactory pathway of mice: Biochemical and morphological effects. Brain Res. 81:469–483.Google Scholar
  20. 20.
    Ihnat, M., andBersohn, R. 1970.1H Nuclear magnetic resonance study of the copper(II)-carnosine complex in aqueous solution. Biochemistry 9:4555–4566.Google Scholar
  21. 21.
    Ganellin, C. R., Durant, G. J., andEmmett, J. C. 1976. Some chemical aspects of histamine H2-receptor antagonists. Fed. Proc. 35:1924–1930.Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Charles Eric Brown
    • 1
  • Frank L. Margolis
    • 1
  • Thomas H. Williams
    • 2
  • Ross G. Pitcher
    • 2
  • George Elgar
    • 2
  1. 1.Roche Institute of Molecular BiologyNutley
  2. 2.Chemical Research DepartmentHoffmann-La Roche Inc.Nutley

Personalised recommendations