Skip to main content
Log in

Regulation of (Na+, K+) adenosinetriphosphatase of nerve ending membranes

Action of norepinephrine and a soluble factor

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Norepinephrine added in vitro to nerve ending membranes from rat cerebral cortex stimulates the activity of (Na+, K+) adenosinetriphosphatase (ATPase) only in the presence of the soluble brain fraction. In its absence norepinephrine inhibits the enzyme. (Mg2+)ATPase also showed stimulation by norepinephrine in the presence of the soluble fraction, but of lesser magnitude. The activation of (Na+, K+)ATPase by norepinephrine is not reproduced by cyclic AMP and is not antagonized by either α- or β-adrenergic blocking agents. These results suggest that the stimulation caused by norepinephrine is a direct effect on the enzyme and is not mediated by cyclic AMP or adrenergic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshimura, K. 1973. Activation of Na−K activated ATPase in rat brain by catecholamine. J. Biochem. 74:389–391.

    Google Scholar 

  2. Godfraind, T., Kock, M. C., andVerbeke, N. 1974. The action of EGTA on the catecholamines stimulation of rat brain Na−K-ATPase. Biochem. Pharmacol. 23:3505–3511.

    Google Scholar 

  3. Iwangoff, P., Enz, A., andChappius, A. 1974. Effect of adrenergic blockers on the activation of brain ATPase by noradrenaline. Experientia 30:688.

    Google Scholar 

  4. Chappius, A., Enz, A., andIwangoff, P. 1975. Some comments on the adrenergic regulation of the (Na+K+) ATPase system in the brain. Triangle 14:96–98.

    Google Scholar 

  5. Gilbert, J. C., Wyllie, M. G., andDavison, D. V. 1975. Nerve terminal ATPase as possible trigger for neurotransmitter release. Nature 255:237–238.

    Google Scholar 

  6. Schaefer, A., Unyi, G., andPfeifer, A. K. 1972. The effects of a soluble factor and of catecholamines on the activity of adenosine triphosphatase in subcellular fractions of rat brain. Biochem. Pharmacol. 21:2289–2294.

    Google Scholar 

  7. Logan, J. G., andO'Donovan, D. J. O. 1976. The effects of ouabain and the activation of neural membrane ATPase by biogenic amines. J. Neurochem. 27:185–189.

    Google Scholar 

  8. Rodriguez de Lores Arnaiz, G., Alberici M., andDe Robertis, E. 1967. Ultrastructural and enzymic studies of cholinergic and non-cholinergic synaptic membranes isolated from brain cortex. J. Neurochem. 14:215–225.

    Google Scholar 

  9. Albers, R. W., Rodriguez de Lores Arnaiz, G., andde Robertis, E. 1965. Sodium-potassium-activated ATPase and potassium activatedp-nitrophenylphosphatase: A comparison of their subcellular localizations in rat brain. Proc. Natl. Acad. Sci. U.S.A. 53:557–564.

    Google Scholar 

  10. Lowry, O. H., andLopez, J. A. 1946. Determination of inorganic phosphate in presence of labile P esters. J. Biol. Chem. 162:421–428.

    Google Scholar 

  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  12. Beauge, L. A. andGlynn, I. M. 1977. A modifier of (Na+−K+)ATPase in commercial ATP. Nature 268:355–356.

    Google Scholar 

  13. Hudgins, P. M., andBond, G. H. 1977. (Mg2+−K+) dependent inhibition of Na+K+ATPase due to a contaminant in equine muscle ATP. Biochim. Biophys. Res. Commun. 77:1024–1029.

    Google Scholar 

  14. Josephson, L., andCantley, C., Jr. 1977. Isolation of a potent (Na+−K+) ATPase inhibitor from striated muscle. Biochemistry 16:4572–4578.

    Google Scholar 

  15. Fagan, J. B., andRacker, E. 1977. Reversible inhibition of (Na+, K+) ATPase by Mg2+, adenosine triphosphate, and K+. Biochemistry 16:152–158.

    Google Scholar 

  16. Rodriguez de Lores Arnaiz, G., andde Robertis, E. 1972. Properties of the isolated nerve endings. Pages 237–272,in Bronner, F., and Kleinzeller, A. (eds.), Current Topics in Membranes and Transport, Vol. 3, Academic Press, New York.

    Google Scholar 

  17. Shaefer, A., Seregi, A., andKomlos, M. 1974. Ascorbic acid-like effect of the soluble fraction of rat brain on adenosine triphosphatases and its relation to catecholamines and chelating agents. Biochem. Pharmacol. 23:2257–2271.

    Google Scholar 

  18. De Robertis, E., Rodriguez de Lores Arnaiz, G., Salganicoff, L., Pellegrino de Iraldi, A., andZieher, L. M. 1963. Isolation of synaptic vesicles and structural organization of the acetylcholine system within brain nerve ending. J. Neurochem. 10:225–235.

    Google Scholar 

  19. De Robertis, E., Rodriguez de Lores Arnaiz, G., Alberici, M., Butcher, R. W., andSutherland, E. W. 1967. Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex. J. Biol. Chem. 242:3487–3493.

    Google Scholar 

  20. De Robertis, E. 1975. Synaptic Receptors. Modern Pharmacology-Toxycology. Vol. 4, Marcel Dekker, New York.

    Google Scholar 

  21. Phillis, J. W. 1974. The role of calcium in the central effects of biogenic amines. Life Sciences 14:1184–1201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez de Lores Arnaiz, G., Mistrorigo de Pacheco, M. Regulation of (Na+, K+) adenosinetriphosphatase of nerve ending membranes. Neurochem Res 3, 733–744 (1978). https://doi.org/10.1007/BF00965996

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965996

Keywords

Navigation