Skip to main content
Log in

Effect of calcium on brain metabolism in vitro

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In attempts to distinguish between direct and indirect effects of Ca on brain cell metabolism, respiration, glycolysis, ATP, phosphocreatine, incorporation of [14C] leucine into protein, and accumulation of45Ca was determined in brain slices. Incubation was carried out in normal salt-balanced medium, in high-potassiumor ouabain-containing medium under aerobic and anaerobic conditions. Calcium ions inhibited slightly glycolysis and respiration in normal medium and activated amino acid incorporation into proteins. Levels of ATP and phosphocreatine remained normal. These effects were interpreted as due to a stabilization of plasma membranes by Ca ions to prevent their spontaneous depolarization. Incubation of slices in high-potassium and ouabain media in aerobic conditions in the presence of Ca resulted in activation of respiration and glycolysis, decrease of ATP and phosphocreatine levels, and inhibition of amino acid incorporation into proteins. The disturbances in energy metabolism, caused by the respiration-linked Ca uptake in brain mitochondria and concomitant inhibition of oxidative phosphorylation, may lead to the inhibition of amino acid incorporation into proteins. An increase in Ca levels in the cytoplasm may only be expected in anaerobic conditions during the incubation in high-potassium and ouabain media. This is manifested by a direct inhibition of glycolysis by Ca ions and a drastic decrease of ATP and phosphocreatine in slices. The results suggest that stimulation of aerobic glycolysis and inhibition of anaerobic glycolysis by Ca may explain the unknown mechanism of the so-called “reversed Pasteur effect” of brain slices incubated in high-potassium media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, P. E., 1972. Transport and metabolism of calcium ions in nerve. Progr. Biophys. Mol. Biol. 24:177–223.

    Google Scholar 

  2. Banay-Schwartz, M., Teller, D. N., Gergely, A., andLajtha, A. 1974. The effects of metabolic inhibitors on amino acid uptake and the levels of ATP, Na+ and K+ in incubated slices of mouse brain. Brain Res. 71:117–131.

    Google Scholar 

  3. Basi, M., andBarnelli-Zazzera, A. 1960. Effect of potassium ions on brain respiration and amino acid incorporation into brain proteins in vitro. Experientia 16:430.

    Google Scholar 

  4. Blaustein, M. P. 1974. The interrelationship between sodium and calcium fluxes across cell membranes. Rev. Physiol. Biochem. Pharmacol. 70:33–82.

    Google Scholar 

  5. Blaustein, M. P. 1975. Effects of potassium, veratridine and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro. J. Physiol. 247:617–655.

    Google Scholar 

  6. Blaustein, M. P., andEctor, A. C. 1976. Carrier-mediated sodium-dependent and calcium-dependent calcium efflux from pinched-off presynaptic nerve terminals (synaptosomes) in vitro. Biochim. Biophys. Acta 419:295–308.

    Google Scholar 

  7. Brown, H. M., Pemberton, J. P., andOwen, J. D. 1976. A calcium-sensitive microelectrode suitable for intracellular measurement of calcium (II) activity. Anal. Chim. Acta 85:261–276.

    Google Scholar 

  8. Bull, R. J., andCummings, J. T. 1973. Influence of potassium on the steady-state redox potential of the electron transport chain in slices of rat cerbral cortex and the effect of ouabain. J. Neurochem. 21:913–937.

    Google Scholar 

  9. Carnay, L., andGrundfest, S. 1974. Excitable membrane stabilization by diphenylhydantoin and calcium. Neuropharmacology 13:1097–1108.

    Google Scholar 

  10. Charnock, J. S. 1963. The accumulation of calcium by brain cortex slices. J. Neurochem. 10:219–223.

    Google Scholar 

  11. Cohen, S. R. 1972. The estimation of extracellular space of brain tissue in vitro. Pages 179–219,in Marks, N., and Rodnight, R. (eds.), Research Methods in Neurochemistry, Vol. 1, Plenum Press, New York.

    Google Scholar 

  12. Cocke, W. J., andRobinson, J. D. 1971. Factors influencing calcium movements in rat brain slices. Am. J. Physiol. 221:218–225.

    Google Scholar 

  13. De Almeida, D. F., Chain, E. B., andPocchiari, F. 1965. Effect of ammonium and other ions on the glucose-dependent active transport ofl-histidine in slices of rat brain cortex. Biochem. J. 95:793–796.

    Google Scholar 

  14. De Belleroche, J. S., andBradford, H. F. 1972. Metabolism of beds of mammalian cortical synaptosomes: Response to depolarizing influences. J. Neurochem. 19:585–602.

    Google Scholar 

  15. Dickens, F., andGreville, G. D. 1935. The metabolism of normal and tumour tissue. XIII. Neutral salt effects. Biochem. J. 29:1468–1483.

    Google Scholar 

  16. Dunlop, D. S., van Elden, W., andLajtha, A. 1975. Optimal conditions for protein synthesis in incubated slices of rat brain. Brain Res. 99:303–318.

    Google Scholar 

  17. Glazer, R. I., andWeber, G. 1971. The effect ofl-phenylalanine and phenylpyruvate on glycolysis in rat cerebral cortex. Brain Res. 33:439–450.

    Google Scholar 

  18. Gordon, J., andLipmann, F. 1967. Role of divalent ions in poly U-directed phenylalanine polymerization. J. Mol. Biol. 23:23–33.

    Google Scholar 

  19. Hertz, L. 1973. Ion effects on metabolism in the adult mammalian brain in vitro. Evidence of a potassium-induced, stimulation of active uptake of KCl into neuroglial cell. Pages 1–207. F.A.D.L's Forlag A/S, Copenhangen.

    Google Scholar 

  20. Huttunen, M. O. 1969. Protein and ribonucleic acid metabolism in rat brain cortex slices. Thesis, Helsinki.

  21. Huttunen, M. O. 1973. General model for the molecular events in synapses during learning. Persp. Biol. Med. 17:103–108.

    Google Scholar 

  22. Joanny, P., andHillman, H. 1964. Further studies on the potassium and sodium concentrations of mammalian cerebral slices in vitro. J. Neurochem. 11:413–422.

    Google Scholar 

  23. Katz, R. I., Chase, T. N., andKopin, I. J. 1969. Effect of ions on stimulus-induced release of amino acids from mammalian brain slices. J. Neurochem. 16:961–967.

    Google Scholar 

  24. Lahiri, S., andLajtha, A. 1964. Cerebral amino acid transport in vitro. I. Some requirements and properties of uptake. J. Neurochem. 11:77–86.

    Google Scholar 

  25. Lazarewicz, J. W., Haljamäe, H., andHamberger, A. 1974. Calcium metabolism in isolated brain cells and subcellular fractions. J. Neurochem. 22:33–45.

    Google Scholar 

  26. Lazarewicz, J. W., Kanje, M., Sellström, Å., andHamberger, A. 1977. Calcium fluxes in cultured and bulk isolated neuronal and glial cells. J. Neurochem. 29:495–502.

    Google Scholar 

  27. Lehninger, A. L. 1971. Mitochondria and the physiology of Ca2+. Trans. Am. Clin. Climatol. Assoc. 83:83–94.

    Google Scholar 

  28. Lehninger, A. L., Carafoli, E., andRossi C. 1967. Energy-linked ion movements in mitochondrial systems. Adv. Enzymol. 29:259–320.

    Google Scholar 

  29. Lolley, R. N. 1963. The calcium content of isolated cerebral tissue and their steadystate exchange of calcium. J. Neurochem. 10:665–676.

    Google Scholar 

  30. Lowry, O. H., Passoneau, J. V., Hasselberger, F. X., andSchulz, D. W. 1964. Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem. 239:18–30.

    Google Scholar 

  31. Mase, K., Takahashi, Y., andOgata, K. 1962. The incorporation of [14C]-glycine into the protein of guinea pig brain cortex slices. J. Neurochem. 9:281–288.

    Google Scholar 

  32. Mc Ilwain, H. 1952. Phosphates of brain during in vitro metabolism. Effects of oxygen glucose, glutamate, glutamine and calcium and potassium salts. Biochem. J. 52:289–295.

    Google Scholar 

  33. Mulder, A. H., Van Den Berg, W. B., andStoof, J. C. 1975. Calcium-dependent release of radiolabeled catecholamines and serotonin from rat brain synaptosomes in a superfusion system. Brain Res. 99:419–424.

    Google Scholar 

  34. Quastel, J. H. 1962. Effects of electrolytes on brain metabolism. Pages 226–237,in Elliott, K. A. C., Page, I. H., and Quastel, J. H. (eds.), Neurochemistry, Charles C. Thomas, Springfield.

    Google Scholar 

  35. Rao, K. N., de Smet, M., Howells, A. J., andBygrave, F. L. 1974. Inhibition by calcium of tRNA aminoacylation in preparations from rat liver. FEBS Lett. 41:185–188.

    Google Scholar 

  36. Rasmussen, H. 1970. Cell communication, calcium ion and cyclic adenosine monophosphate. Science 170:404–411.

    Google Scholar 

  37. Rossi, C. S., andLehninger, A. L. 1964. Stoichiometry of respiratory stimulation, accumulation of Ca++ and phosphate, and oxidative phosphorylation in rat liver mitochondria. J. Biol. Chem. 239:3971–3980.

    Google Scholar 

  38. Simkiss, K. 1974. Calcium translocation by cells. Endeavour 33:119–123.

    Google Scholar 

  39. Stahl, W. L., andSwanson, P. F. 1971. Movements of calcium and other cations in isolated cerebral tissues. J. Neurochem. 18:415–427.

    Google Scholar 

  40. Swanson, P. D. 1968. Effect of ouabain on acid-soluble phosphates and electrolytes of isolated cerebral tissues in presence and absence of calcium. J. Neurochem. 15:57–67.

    Google Scholar 

  41. Takagaki, G. 1968. Control of aerobic glycolysis and pyruvate kinase activity in cerebral cortex slices. J. Neurochem. 15:903–916.

    Google Scholar 

  42. Takemori, A. E. 1964. The influence of morphine on glucose utilization in cerebral preparations of rats. J. Pharmacol. Exp. Ther. 145:20–26.

    Google Scholar 

  43. Tower, D. B. 1968. Ouabain and the distribution of calcium and magnesium in cerebral tissues in vitro. Exp. Brain Res. 6:273–283.

    Google Scholar 

  44. Tsukada, Y., Nagata, Y., Hirano, S., andMatsutani, T. 1963. Active transport of amino acid into cerebral cortex slices. J. Neurochem. 10:241–256.

    Google Scholar 

  45. Vernie, L. N., Bont, W. S., andEmmelot, P. 1972. Differences in Mg2+ and Ca2+ dependence of amino acid incorporation by free and membrane-bound polyribosomes isolated from liver, and an effect of the hepatocarcinogen dimethylnitrosamine. Biochim. Biophys. Acta 281:253–262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łazarewicz, J.W., Zalewska, T., Haljamäe, H. et al. Effect of calcium on brain metabolism in vitro. Neurochem Res 3, 683–698 (1978). https://doi.org/10.1007/BF00965992

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965992

Keywords

Navigation