Advertisement

Neurochemical Research

, Volume 7, Issue 10, pp 1269–1276 | Cite as

Effects of cell density on the neutral glycolipid composition of cultured human brain and glioma cells

  • Allan J. Yates
  • Vis A. Liepkalns
  • Christine Icard-Liepkalns
  • Firoze Jungalwala
  • Ralph E. Stephens
  • Ronald W. Hart
Original Articles

Abstract

Density dependent chain elongation of neutral glycosphingolipids (NGSL) is associated with contact inhibition of mitosis in several normal cultured cell lines. Transformed non-neural cell lines which have impaired contact inhibition frequently lose this biochemical response. To determine if either of these phenomena occur in human neural cells we determined NGSL compositions of cultured glioblastoma multiforme and normal fetal brain cells. Fetal cells generally had more total NGSL than the tumor cells. As a percentage of total NGSL, both cell lines at higher cell densities had larger proportions of ceramide trihexoside and globoside, but smaller proportions of cerebroside. This decrease was mainly in nonhydroxy fatty acid cerebroside of glioma cells, but in hydroxy fatty acid cerebroside of normal fetal brain cells. These results demonstrate that although glioblastoma multiforme cells have markedly impaired growth control, they still preserve density dependent chain elongation of NGSL. A role for this phenomenon in normal cellular growth control has yet to be established.

Keywords

Glioma Cell Ceramide High Cell Density Glioblastoma Multiforme Hydroxy Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hakomori, S.-I. 1970. Cell density-dependent changes of glycolipid concentrations in fibroblasts, and loss of this response in virus-transformed cells. Proc. Natl. Acad. Sci. U.S.A. 67:1741–1747.PubMedGoogle Scholar
  2. 2.
    Robbins, P. W., andMacpherson, I. A. 1971. Glycolipid synthesis in normal and transformed animal cells. Proc. Roy. Soc. Lond. B. 177:49–58.Google Scholar
  3. 3.
    Critchley, D. R., andMacpherson, I. 1973. Cell density dependent glycolipids in NIL2 hamster cells, derived malignant and transformed cell lines. Biochim. Biophys. Acta 296:145–159.PubMedGoogle Scholar
  4. 4.
    Sakiyama, H., andRobbins, P. W. 1973. Glycolipid synthesis and tumorigenicity of clones isolated from the Nil 2 line of hamster embryo fibroblasts. Fed. Proc. 32:86–90.PubMedGoogle Scholar
  5. 5.
    Kijimoto, S., andHakomori, S. 1971. Enhanced glycolipid:-galactosyl-transferase activity in contact-inhibited hamster cells, and loss of this response in polyoma transformants. Biochem. Biophys. Res. Commun. 44:557–563.PubMedGoogle Scholar
  6. 6.
    Kijimoto, S., andHakomori, S.-I. 1972. Contact-dependent enhancement of net synthesis of Forssman glycolipid antigen and hematoside in Nil cells at the early stage of cell-to-cell contact. FEBS Lett. 25:38–42.PubMedGoogle Scholar
  7. 7.
    Yogeeswaran, G., Laine, R. A., andHakomori, S. 1974. Mechanism of cell contact-dependent glycolipid synthesis: Further studies with glycolipid-glass complex. Biochem. Biophys. Res. Comm. 59:591–599.PubMedGoogle Scholar
  8. 8.
    Kostic, D., andBucheit, F. 1970. Gangliosides in human brain tumors. Life Sci. 9:590–596.Google Scholar
  9. 9.
    Aruna, R. M., andBasu, D. 1976. Glycolipid metabolism in tumours of central nervous system. Ind. J. Biochem. Biophys. 13:158–160.Google Scholar
  10. 10.
    Yates, A. J., Thompson, D. K., Boesel, C. P., Albrightson, C., andHart, R. W. 1979. Lipid composition of human neural tumors. J. Lipid Res. 20:428–436.PubMedGoogle Scholar
  11. 11.
    Traylor, T. D., andHogan, E. L. 1980. Gangliosides of human cerebral astrocytomas. J. Neurochem. 34:126–131.PubMedGoogle Scholar
  12. 12.
    Liepkalns, V. A., Icard, C., Yates, A. J., Thompson, D. K., andHart, R. W. 1981. Effects of cell density on lipids of human glioma and fetal neural cells. J. Neurochem. 36:1959–1965.PubMedGoogle Scholar
  13. 13.
    Icard, C., Liepkalns, V. A., Yates, A. J., Singh, N. P., Stephens, R. E., andHart, R. W. 1981. Growth characteristics of human glioma-derived and fetal neural cells in culture. J. Neuropathol. Exp. Neurol. 40:512–525.PubMedGoogle Scholar
  14. 14.
    Oyama, V. I., andEagle, H. 1956. Measurement of cell growth in tissue culture with a phenol reagent (Folin-Ciocolteau). Proc. Soc. Exp. Biol. Med. 91:305–307.PubMedGoogle Scholar
  15. 15.
    Suzuki, K. 1965. The pattern of mammalian brain gangliosides. II. The evaluation of the extraction procedure for the analysis of mixtures of tissue gangliosides. J. Neurochem. 12:629–638.PubMedGoogle Scholar
  16. 16.
    Vance, D. E., andSweeley, C. 1967. Quantitative determination of the neutral glycosyl ceramides in human blood. J. Lipid Res. 8:621–630.PubMedGoogle Scholar
  17. 17.
    Balázs, R., Rooksank, B. W. L., Patel, A. J., Johnson, A. L., andWilson, D. A. 1971. Incorporation of [35S]sulfate into brain constituents and the effects of thyroid hormone on myelination. Brain Res. 30:273–293.PubMedGoogle Scholar
  18. 18.
    Jungalwala, F. B., Hayes, L., andMcCluer, R. H. 1977. Determination of less than a nanomol of cerebrosides by high performance liquid chromatography with gradient elution analysis. J. Lipid Res. 18:285–292.PubMedGoogle Scholar
  19. 19.
    McCluer, R. H., andUllman, M. D. 1980. Preparative and analytical high performance liquid chromatography of glycolipids. ACS Symposium Series 128:1–13.Google Scholar
  20. 20.
    Norton, W. T. 1976. Formation, structure and biochemistry of myelin. Pages 74–99,in:Siegel, G. J., Albers, R. W., Katzman, R., andAgranoff, B. W. (eds.), Basic Neurochemistry, Little, Brown and Co., Boston.Google Scholar
  21. 21.
    Svennerholm, L. 1964. The distribution of lipids in the human nervous system-I. Analytical procedure. Lipids of foetal and newborn brain. J. Neurochem. 11:839–853.PubMedGoogle Scholar
  22. 22.
    Abe, T., andNorton, W. T. 1974. The characterization of spingolipids from neurons and astroglia of immature rat brain. J. Neurochem. 23:1025–1036.PubMedGoogle Scholar
  23. 23.
    Dawson, G., Kemp, S. F., Stoolmiller, A. C., andDorfman, A. 1971. Biosynthesis of glycosphingolipids by mouse neuroblastoma (NG41A), Rat glia (RGC-6) and human glia (CHB-4) in cell culture. Biochem. Biophys. Res. Commun. 44:687–694.PubMedGoogle Scholar
  24. 24.
    Stoolmiller, A. C., Dawson, G., andDorfman, A. 1973. The metabolism of glycosphingolipids and glycosaminoglycans. Pages 247–280,in:Sato, G. (ed.), Tissue culture of the nervous system, Plenum Press, New York.Google Scholar
  25. 25.
    Robert, J., Rebel, G., andMandel, P. 1977. Glycosphingolipids from cultured astroblasts. J. Lipid Res. 18:517–522.PubMedGoogle Scholar
  26. 26.
    Stoolmiller, A. C., Dawson, G., andKemp, S. F. 1979. Short Communication—Synthesis of glycosphingolipids in mouse glial tumors. J. Neurochem. 32:637–641.PubMedGoogle Scholar
  27. 27.
    Dawson, G. 1979. Regulation of glycosphingolipid metabolism in mouse neuroblastoma and glioma cell lines. J. Biol. Chem. 254:155–162.PubMedGoogle Scholar
  28. 28.
    Chou, K.-H., andJungalwala, F. B. 1981. Neutral glycosphingolipids and ceramide composition of ethylnitrosourea-induced rat neural tumors: Accumulation of ceramide in tumors. J. Neurochem. 36:394–401.PubMedGoogle Scholar
  29. 29.
    Brailovsky, C., Trudel, M., Lallier, R., andNigam, V. N. 1973. Growth of normal and transformed rat embryo fibroblasts. Effects of glycolipids from Salmonella minnesota R mutants. J. Cell Biol. 57:124–132.PubMedGoogle Scholar
  30. 30.
    Laine, R. A., andHakomori, S.-I. 1973. Incorporation of exogenous glycosphingolipids in plasma membranes of cultured hamster cells and concurrent change of growth behavior. Biochem. Biophys. Res. Commun. 54:1039–1045.PubMedGoogle Scholar
  31. 31.
    Keenan, T. W., Schmidt, E., Franke, W. W., andWiegandt, H. 1975. Exogenous glycosphingolipids suppress growth rate of transformed and untransformed 3T3 mouse cells. Exp. Cell Res. 92:259–270.PubMedGoogle Scholar
  32. 32.
    Yates, A. J., Icard, C., Liepkalns, V. A., andStephens, R. E. 1981. Effects of exogenous gangliosides on growth of cultured glioma and fetal brain cells. J. Neuropathol. Exp. Neurol. 40:302.Google Scholar
  33. 33.
    Icard-Liepkalns, C., Liepkalns, V. A., Yates, A. J., andStephens, R. E. 1981. Normal and neoplastic human brain cells in culture: Cell division and gangliosides. J. Cell Biol. 91:10a.Google Scholar
  34. 34.
    Icard-Liepkalns, C., Liepkalns, V. A., Yates, A. J., Rodriguez, Z. R., andStephens, R. E. Effect of exogenous gangliosides on human neural cell division. J. Cell. Physiol (in press).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Allan J. Yates
    • 1
  • Vis A. Liepkalns
    • 1
  • Christine Icard-Liepkalns
    • 2
  • Firoze Jungalwala
    • 3
  • Ralph E. Stephens
    • 1
    • 2
  • Ronald W. Hart
    • 2
  1. 1.Department of PathologyOhio State UniversityColumbus
  2. 2.Department of RadiologyOhio State UniversityColumbus
  3. 3.Eunice Kennedy Schriver Center for Mental Retardation, Inc.Waltham

Personalised recommendations