Skip to main content
Log in

Approaches to the design of biochemical probes for positron emission tomography

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Since the development of the 2-deoxy-D-glucose procedure by L. Sokoloff considerable advances have been made in the design of radiotracers for estimation of in-vivo biochemical parameters. Many of these advances are due to the development of positron emission tomography. As a result key biochemical processes can now be evaluated with newly developed positron-emitting labeled enzyme probes in man, in-vivo, allowing the study of a wide range of specific cellular processes in health and disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Secrist, J., Barrio, J. R., and Leonard, N. J. 1971. A Fluorescent Modification of Adenosine Triphosphate with Activity in Enzyme Systems: 1,N6-Ethenoadenosine Triphosphate. Science 175:646–647.

    Google Scholar 

  2. Baker, B. R. 1967. Design of Active-Site Directed Irreversible Enzyme Inhibitors, J. Wiley and Sons, N. York.

    Google Scholar 

  3. Welch, G. R., and Kell, D. B. 1986. Not Just Catalysts, Molecular Machines in Bioenergetics. Pages 451–492in Welch GR (ed.), The Fluctuating Enzyme, J. Wiley and Sons, New York.

    Google Scholar 

  4. Thom R. 1975. Structural Stability and Morphogenesis, Benjamin, Reading, MA.

    Google Scholar 

  5. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S. Pettigrew, K. D., Sakurada, O., and Shinohara, M. 1977. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916.

    Google Scholar 

  6. Huang, S. C., Phelps, M. E., and Hoffman, E. J. 1980. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am. J. Physiol. 238:E69-E82.

    Google Scholar 

  7. McCulloch, J. 1982. Mapping functional alterations in the CNS with [14C]deoxyglucose method. Pages 321–410.in Handbook of Psychopharmacology, Vol. 15, L. L. Iversen, S. D. Iversen and S. H. Snyder (eds.) Plenum Press, New York.

    Google Scholar 

  8. Phelps, M. E., Huang, S. C., and Hoffman, E. J. 1979. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: Validation of method. Ann. Neurol. 6:371–388.

    Google Scholar 

  9. Sokoloff, L. 1986. Cerebral circulation, energy metabolism, and protein synthesis: General characteristics and principles of measurements. Pages 1–71in Positron Emission Tomography and Autoradiography, Phelps, M. E., Mazzictta, J. C. and Schelbert, H. R. (eds.), Raven Press, New York.

    Google Scholar 

  10. Abeles, R. H., and Alston, T. A. 1990. Enzyme Inhibition by Fluoro Compounds. J. Biol. Chem. 265:16705–16708.

    Google Scholar 

  11. Wick, A. N., Drury, D. R., Nakada, H. I., and Wolf, J. B. 1957. Localization of the primary metabolic block produced by 2-deoxyglucose. J. Biol. Chem. 224:963–969.

    Google Scholar 

  12. Krivokapich, J., Huang, S. C., Phelps, M. E., Barrio, J. R., Watanabe, C., Selin, C., and Shine, K. 1982. Determination of myocardial metabolic rate for glucose from fluoro-18-deoxyglucose. Am. J. Physiol. 243:H884-H895.

    Google Scholar 

  13. Huang, S. C., and Phelps, M. E. 1986. Principles of tracer kinetic modeling in positron emission tomography and autoradiography, Pages, 287–346in Positron Emission Tomography and Autoradiography. Phelps, M. E., Mazziotta, J. C., and Schelbert, H. R. (eds.), Raven Press, New York.

    Google Scholar 

  14. Raichle, M. E., Larson, K. B., Phelps, M. E., Grubb, R. L., Jr., Welch, M. J., and Ter-Pogossian, M. M. 1975. In vivo measurement of brain glucose transport and metabolism employing glucose11C. Am. J. Physiol. 228:1936–1948.

    Google Scholar 

  15. Keen, R. E., Barrio, J. R., Huang, S. C., Hawkins, R. A., and Phelps, M. E. 1989. In vivo cerebral protein synthesis rates with leucyl-transfer RNA used as a precursor pool: Determination of biochemical parameters to structure tracer kinetic models for positron emission tomography. J. Cereb. Blood Flow Metab. 9:429–445.

    Google Scholar 

  16. Hawkins, R. A., Huang, S. C., Barrio, J. R., Keen, R. E., Feng, D., Mazziotta, J. C., and Phelps, M. E. 1989. Estimation of local cerebral protein synthesis rates withl-[1-11C]leucine and PET: methods, model and results in animals and humans. J. Cereb Blood Flow Metab 9:446–460.

    Google Scholar 

  17. Zubay, G. 1983. Biochemistry. Addison-Wesley, Reading, MA.

    Google Scholar 

  18. Kaufman, S. 1961. Enzyme conversion of 4-fluoro-phenylalanine to tyrosine. Biochim. Biophysics. Acta 51:619–621.

    Google Scholar 

  19. Coenen, H. H., Kling, P., and Stocklin, G. 1989. Cerebral metabolism ofl-[2-18F]fluorotyrosine, a new PET tracer for protein synthesis. J. Nucl. Med. 30:1367–1372.

    Google Scholar 

  20. Schlosser, M. 1978. Introduction of fluorine into organic molecules: Why and how. Tetrahedron, 34:3–17.

    Google Scholar 

  21. Walsh, C. 1983. Fluorinated substrate analogs: Routes of metabolism and selective toxicity. Pages 197–289,in: A. Meister (ed.), Vol. 55, Advances in Enzymology, John Wiley and Sons, New York.

    Google Scholar 

  22. Santi, D. V., Pogolotti, A. L., Jr., Newman, E. M., and Wataya, Y. 1981. Aspect of the biochemistry and biochemical pharmacology of 5-fluorinated pyrimidines, Pages 123–142.in Filler, R., and Kobayashi, Y. (eds.), Biomedical Aspects of Fluorine Chemistry, Elsevier, New York.

    Google Scholar 

  23. Barrio, J. R. 1986. Biochemical principles in radiopharmaceutical design and utilization. Pages 451–492in Phelps, M. E., Mazziotta J. C., and Schelbert, H. R. (eds), Positron emission tomography and autoradiography. Raven Press, New York.

    Google Scholar 

  24. Barrio, J. R., Huang, S. C., and Phelps, M. E. 1988. In vivo assessment of neurotransmitter biochemistry in humans. Ann. Rev. Pharmacol. Toxicol. 28:213–230.

    Google Scholar 

  25. Creese, I. 1983. Receptor interactions of neuroleptics. In: Neuroleptics: Neurochemical, Behavioral, and Clinical Perspectives, edited by J. T. Coyle and S. J. Enna, pp. 183–222. Raven Press, New York.

    Google Scholar 

  26. Frost, J. J. 1982. Pharmacokinetic aspects of the in vivo, non invasive study of neuroreceptors in man. Pages 25–49.in W. C. Eckelman, (ed.), Receptor Binding Radiotracers, CRC Press, Boca Raton, FL.

    Google Scholar 

  27. Mintun, M. A., Raichle, M. E., Kilbourn, M. R., Wooten, G. F., and Welch, M. J. 1984. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann. Neurol. 15:217–227.

    Google Scholar 

  28. Bahn, M. M., Huang, S. C., Hawkins, R. A., Satyamurthy, N., Hoffman, J. M., Barrio, J. R., Mazziotta, J. C., and Phelps, M. E. 1989. Models of in vivo kinetic interactions of dopamine D2 neuroreceptors and 3-(2′-[18F]fluoroethyl)spiperone examined with positron emission tomography. J Cereb Blood Flow Metab 9:840–849.

    Google Scholar 

  29. Barrio, J. R., Satyamurthy, N., Huang, S. C., Keen, R. E., Nissenson, C. H. K., Hoffman, J. M., Ackerman, R. F., Bahn, M. M., Mazziotta, J. C., and Phelps, M. E. 1989. 3-(2′-[18F]fluoroethyl)spiperone: in vivo biochemical and kinetic characterization in rodents, nonhuman primates, and humans. J. Cereb Blood Flow Metab 9:830–839.

    Google Scholar 

  30. Krassner, M. B. 1983. Brain chemistry. Chem. Eng. News, 61:22–33.

    Google Scholar 

  31. Coyle, J. T., and Snyder, J. H. 1981. Catecholamines. In Basic Neurochemistry, eds. G. J. Siegel, R. W., Albers, B. W. Agranoff, R. Katzman, pp. 205–17. Boston: Little Brown.

    Google Scholar 

  32. Zigmond, R. E. 1985. Biochemical consequences of synaptic stimulation: The regulation of tyrosine hydroxylase activity by multiple transmitters. TINS 8:63–69.

    Google Scholar 

  33. Melega, W. P., Perlmutter, M. M., Luxen, A., Nissenson, C. K., Grafton, S. T., Huang, S. C., Phelps, M. E., and Barrio, J. R. 1989. 4-[18F]Fluoro-L-m-Tyrosine: An L-3, 4-dihydroxyphenylalanine analog for probing presynaptic dopaminergic function with positron emission tomography. J. Neurochem. 53:311–314.

    Google Scholar 

  34. Barrio, J. R., Huang, S. C., Melega, W. P., Yu, D. C., Hoffman, J. M., Schneider, J. S., Satyamurthy, N., Mazziotta, J. C., and Phelps, M. E. 1990. J. Neurosc. Res. 27:487–493.

    Google Scholar 

  35. Holz, R. W. 1978. Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential. Proc. Natl. Acad. Sci. USA 75:5190–5194.

    Google Scholar 

  36. Axelrod, J. 1971. Noradrenaline: fate and control of its biosynthesis. Science 173:598–606.

    Google Scholar 

  37. Garnett, E. S., Firnau, G., and Nahmias, C. 1983. Dopamine visualized in the basal ganglia of living man. Nature 305:137–138.

    Google Scholar 

  38. Garnett, E. S., Nahmias, C., and Firnau, G. 1984. Central dopaminergic pathway in hemiparkinsonism examined by positron emission tomography. Can. J. Neurol. Sci. 11:174–179.

    Google Scholar 

  39. Calne, D. B., Langston, J. W., Martin, W. R. W., Stoessl, A. J., Ruth, T. J., Adam, M. J., Pate, B. D., and Schulzer, M. 1985. Positron emission tomography after MPTP: observations relating to the cause of parkinson's disease. Nature 317:246–248.

    Google Scholar 

  40. Nahmias, C., Garnett, E. S., Firnau, G., and Lang, A. 1985. Striatal dopamine distribution in parkinsonian patients during life. J. Neurol. Sci. 69:223–230.

    Google Scholar 

  41. Chiueh, C. C., Burns, R. S., Kopin, I. J., Firnau, G., Chirakal, R., and Garnett, E. S. 1986. Determination and visualization of damage to striatal dopaminergic terminals in N-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP-induced parkinsonian monkeys by fluorine-18 labeled 6-fluoro-L-dopa and positron emission tomography. Adv. Neurol. 45:167–169.

    Google Scholar 

  42. Firnau, G., Garnett, E. S., Chirakal, R., Sudesh, S., Nahmias, C., and Schrobilgen, G. 1986. [F-18]fluoro-L-dopa for the in vivo study of intracerebral dopamine. Int. J. Radiat. Appl. Instrum. 37:669–675.

    Google Scholar 

  43. Martin, W. R. W., Stoessl, A. J., Adam, M. J., Ammann, W., Bergstrom, M., Harrop, R., Laihinan, A., Rogers, J. G., Ruth, T. J., Sayre, C. I., Pate, B. D., and Calne, D. B. 1986. Positron emission tomography in parkinson's disease: glucose and dopa metabolism. Adv. Neurol. 45:95–98.

    Google Scholar 

  44. Guttman, M., Steele, J. C., Stoessl, A. J., Peppard, R. F., Martin, W. R. W., Walsh, E. M., Ruth, T., Adam, M. J., Pate, B. D., and Tsui, J. K. C. 1987. 6-[F-18]fluorodopa PET scanning in the ALS-PD complex of Guam. Neurology 37(suppl. 1):113.

    Google Scholar 

  45. Leenders, K. L., Frackowiak, R. S. L., and Lees, A. J. 1987. Progressive supranuclear palsy (PSP) studied with positron emission tomography. Neurology 37(suppl. 1):113.

    Google Scholar 

  46. Leenders, K. L., Aquilonius, S. M., Bergstrom, K., Bjurling, P., Crossman, A. R., Eckernas, S. A., Gee, A. G., Hartvig, P., Lundqvist, H., Langstrom, B., Rimland, A., and Tedroff, J. 1988. Unilateral MPTP lesion in a rhesus monkey: effects on the striatal dopaminergic system measured in vivo with PET using various novel tracers. Brain Rev. 445:61–67.

    Google Scholar 

  47. Guttman, M., Burns, R. S., Martin, W. R. W. Peppard, R. F., Adam, M. J., Ruth, T. J., Allen, G., Parker, R. A., Tulipan, N. B., and Calne, D. B. 1989. PET studies of parkinsonian patients treated with autologous adrenal implants. Can. J. Neurol. Sci. 16:305–309.

    Google Scholar 

  48. Martin, W. R. W., Palmer, M. R., Patlak, C. S., and Calne, D. B. 1989. Nigrostriatal function in humans studies with positron emission tomography. Ann. Neurol. 26:535–542.

    Google Scholar 

  49. Freed, C. R., Breeze, R. E., Rosenberg, N. L., Schneck, S. A., Wells, T. H., Barrett, J. N., Grafton, S. T., Huang, S. C., Eidelberg, D., and Rottenberg, D. A. 1990. Transplantation of human fetal dopamine cells for parkinson's disease. Arch. Neurol. 47:505–512.

    Google Scholar 

  50. Lindvall, O., Brundin, P., Widner, H., Rehncrona, S., Gustavii, B., Frackowiak, R., Leenders, K. L., Sawle, G., Rothwell, J. C., Marsden, D., and Bjorklund, A. 1990. Grafts of fetal dopamine neurons survive and improve motor function in parkinson's disease. Science 247:574–577.

    Google Scholar 

  51. Melega, W. P., Luxen, A., Perlmutter, M. M., Nissenson, C. K., Phelps, M. E., and Barrio, J. R. 1990. Comparative in vivo metabolism of 6-[F-18]fluoro-l-dopa and [H-3]l-dopa in rats. Biochem. Pharmacol. 39:1853–1860.

    Google Scholar 

  52. Cumming, P., Hauser, M., Martin, W. R. W., Grierson, J., Adam, M. J., Ruth, T. J., and McGee, E. G. 1988. Kinetics of in vitro decarboxylation and the in vivo metabolism of 2-18F-and 6-18F-fluorodopa in the hooded rat. Biochem Pharmacol 37:247–250.

    Google Scholar 

  53. Okuno, S., and Fujisawa, H. 1983. Accurate assay of dopa decarboxylase by preventing nonenzymatic decarboxylation of dopa. Anal. Biochem. 129:412–415.

    Google Scholar 

  54. Bosin, T. R., Baldwin, J. R., and Maickel, R. P. 1978. Inhibition of DOPA decarboxylation by analogues of tryptophan. Biochem. Pharmacol. 27:1289–1291.

    Google Scholar 

  55. Chiueh, C. C., Zukowska-Grojec, Z., Kirk, K. L., and Kopin, I. J. 1983. 6-Fluorocatecholamines as false adrenergic neurotransmitters. J Pharmacol Exp Ther 225:529–533.

    Google Scholar 

  56. Huang, S. C., Yu, D. C., Barrio, J. R., Grafton, S., Melega, W. P. Hoffman, J. M., Satyamurthy, N., Mazziotta, J. C., and Phelps, M. E. 1991. Kinetics and modeling of 6-[F-18]Fluoro-L-DOPA in human positron emission tomography studies. J. Cereb Blood Flow Metab, in press.

  57. Gjedde, A., Reithy, J., Kuwabara, H., and Dyve, S. 1990. Determining dopa decarboxylase activity in the human brain in vivo: the complete fluoro-dopa model. J. Nucl. Med. 31(5):720.

    Google Scholar 

  58. Melega, W. P., Hoffman, J. M., Schneider, J. S., Phelps, M. E., and Barrio, J. R. 1991. 6-[F-18]fluoro-L-dopa metabolism in MPTP-treated monkeys: assessment of tracer methodologies for positron emission tomography. Brain Research 543:271–276.

    Google Scholar 

  59. Boyes, B. E., Cumming, P., Martin, W. R. W., and McGeer, E. G. 1986. Determination of plasma [F-18]-6-fluorodopa during positron emission tomography: elimination and metabolism in carbidopa treated subjects. Life Sci. 39:2243–2252.

    Google Scholar 

  60. Cumming, P., Boyes, B. E., Martin, W. R. W., and Adam, M. 1987. The metabolism of [18F]6-fluoro-L-3, 4-dihydroxyphenylalanine in the hooded rat. J Neurochem, 48:601–608.

    Google Scholar 

  61. Woodward, R. W., Tsai, M. D., Floss, H. G., Crooks, P. A., and Coward, J. K. 1980. Stereochemical course of the transmethylation catalyzed by catechol-O-methyltransferase. J Biol Chem 255:9124–9127.

    Google Scholar 

  62. Hegazi, M. F., Borchardt, R. T., and Schowen, R. L. 1979. α-Deuterium and carbon-13 isotope effects for methyl transfer catalyzed by catechol-O-methyltransferase. SN2-like transition state. J Am Chem Soc 101:4359–5365.

    Google Scholar 

  63. Kirk, K. L., Cantacuzene, D., Nimitkitpaisan, Y., McCulloh, D., Padgett, W. L., Daly, J. W., and Creveling, C. R. 1979. Synthesis and biological properties of 2-, 5-, 6-fluoronorepinephrines. J. Med. Chem. 22:1463–1467.

    Google Scholar 

  64. Creveling, C. R., McNeal, E. T., Cantacuzene, D., and Kirk, K. L. 1981. Influence of the fluorine substitutions on the site of enzymatic O-methylation of fluorinated norepinephrines. J. Med. Chem. 24:1395–1399.

    Google Scholar 

  65. Melega, W. P., Hoffman, J. M., Luxen, A., Nissenson, C. H. K., Phelps, M. E., and Barrio, J. R. 1990. The effects of carbidopa on the metabolism of 6-[F-18]fluoro-L-dopa in rats, monkeys and humans. Life Sci. 47:149–157.

    Google Scholar 

  66. Perlmutter, M., Satyamurthy, N., Luxen, A., Phelps, M. E., and Barrio, J. R. 1990. Synthesis of 4-[18F]fluoro-L-m-tyrosine: a model analog for the in-vivo assessment of central dopaminergic function. Appl. Rad. Isot. 41:801–807.

    Google Scholar 

  67. Johnson, R. G. 1988. Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport. Physiol. Rev. 68:232–306.

    Google Scholar 

  68. De Jesus, O. T., Murali, D., Sunderland, C. J., Chen, C. A., Weiler, M., and Nickels, R. J. 1990. [F-18]Fluoro-MDL 72394, a potentially trappable tracer for presynaptic dopamine neurons. J Nucl Med 31, 902 (Abstract).

    Google Scholar 

  69. Reddy, G. N., Melega, W. P., Cheng, D. W., N. Satyamurthy, Phelps, M. E., and Barrio, J. R. 1991. Unpublished observations.

  70. McDonald, I. A., Lacoste, J. M., Bey, P., Wagner, J., Zreika, M., and Palfreyman, M. G. 1984. (E)-β-(Fluoromethylene)-m-tyrosine: A substrate for aromatic amino acid decarboxylase liberating an enzyme-activated irreversible inhibitor of monoamine oxidase. J Amer. Chem. Soc. 106:3354–3356.

    Google Scholar 

  71. Fowler, J. S., MacGregor, R. R., Wolf, A. P., Arnett, C. D., Dewey, S. L., Schlyer, D., Logan, J., Smith, M., Sachs, H., Aquilonius, S. M., Bjurling, P., Halldin, C., Hartvig, P., Leenders, K. L., Lundqvist, H., Oreland, L., Stalnacke, C. G., and Langstrom, B. 1987. Mapping human brain monoamine oxidase A and B with11C-labeled suicide inactivators and PET. Science 235:481–485.

    Google Scholar 

  72. Arnett, C. D., Fowler, J. S., MacGregor, R. R., Schlyer, D. J., Wolf, A. P., Langstrom, B., and Halldin, C. 1987. Turnover of brain monoamine oxidase measured in vivo by positron emission tomography using L-[11C]deprenyl. J Neurochem 49:522–527.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Louis Sokoloff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrio, J.R. Approaches to the design of biochemical probes for positron emission tomography. Neurochem Res 16, 1047–1054 (1991). https://doi.org/10.1007/BF00965849

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965849

Key Words

Navigation