Advertisement

Neurochemical Research

, Volume 16, Issue 9, pp 975–982 | Cite as

Regulation by thyroid hormone of microtubule assembly and neuronal differentiation

  • Jacques Nunez
  • Dominique Couchie
  • Francesco Aniello
  • Anne Marie Bridoux
Original Articles

Abstract

In this review we examine successively: 1) the major effects of thyroid hormone deficiency seen during brain development with special emphasis on the changes in neuronal morphology and migration occurring postnatally in the cerebellum. 2) The effects of this hormone on microtubule assembly during neurite outgrowth and acquisition of neuronal polarity. 3) The changes in expression of the different tubulin isoforms occurring during development in the normal and hypothyroid rat brain. 4) The regulation by thyroid hormone of the transition occurring during development between the juvenile and adult microtubule-associated protein Tau.

Key Words

Thyroid hormone neurite outgrowth cell polarity microtubules tubulin Tau protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eayrs, J. T. 1971. Thyroid and developing brain: anatomical and behavioural effects. Pages 345–355.in Hamburgh, M. and Barrington, E. J. W. (eds.), Hormones and Development. Appleton Century Crofts, New York.Google Scholar
  2. 2.
    Legrand, J. 1982. Hormones thyroidiennes et maturation du système nerveux. J. Physiol. Paris. 78:603–652.Google Scholar
  3. 3.
    Nunez, J. 1986. Thyroid Hormones. 8, pages 1–28,in A. Lajtha (ed). Handbook of Neurochemistry. Plenum Press, New York.Google Scholar
  4. 4.
    Eayrs, J. T. and Lishman, W. A. 1955. The maturation of behaviour in hypothyroidism and starvation. Br. J. Anim. Behav. 3:17–24.Google Scholar
  5. 5.
    Legrand, J. 1967. Analyse de l'action morphogénétique des hormones thyroïdiennes sur le cervelet de jeune rat. Arch. Anat. Microscop. Morphol. Exp. 56:205–244.Google Scholar
  6. 6.
    Edwards, D. D., Crane, A. M., Rosloff, B., Kennedy, C. and Sokoloff, L. 1986. Local cerebral glucose utilization in the adult cretinous rat. Brain Res. 373:139–145.Google Scholar
  7. 7.
    Balasz, R., Brooksbank, B. W. L., Davison, A. N., Eayrs, J. T., and Wilson, D. A. 1969. The effect of neonatal thyroidectomy on myelination in the rat brain. Brain Res. 15:219–232.Google Scholar
  8. 8.
    Sarlieve, L. L., Besnard, F., and Labourdette, G. 1989. Investigation of myelinogenesis in vitro: transient expression of 3,5,3′ triiodothyronine nuclear receptors in secondary cultures of pure rate oligodendrocytes. Pages 113–120.in DeLong, G. R., Robbins, J., and Condliffe, P. G. (eds.), Iodine and the Brain. Plenum Press, New York.Google Scholar
  9. 9.
    Clos, J., Legrand, C., Legrand, J., Ghandour, M. S., Labourdette, G., Vincendon, G., and Gombos, G. 1982. Effect of the thyroid state and undernutrition on S100 protein and astroglia development in the rat cerebellum. Dev. Neurosc. 5:285–292.Google Scholar
  10. 10.
    Rakic, P. 1971. Neuron glia relationship during granule cell migration in developing cerebellar cortex. J. Comp. Neurol. 141:471–476.Google Scholar
  11. 11.
    Huber, G., and Matus, A. 1984. Differences in the cellular distributions of two microtubule-associated proteins, MAP1 and MAP2, in rat brain. J. Neurosci. 4:151–160.Google Scholar
  12. 12.
    Benjamin, S., Cambray-Deakin, M. A., and Burgoyne, R. D. 1988. Effect of hypothyroidism on the expression of three microtubule-associated proteins (1A, 1B and 2) in developing rat cerebellum. Neurosci. 27:931–939.Google Scholar
  13. 13.
    Nunez, J., Couchie, D., and Brion, J. P. 1989. Microtubule assembly: regulation by thyroid hormone. Pages 103–112.in DeLong, G. R., Robbins, J., and Condliffe, P. G. (eds) Iodine and the Brain. Plenum Press, New York.Google Scholar
  14. 14.
    Garner, C. C., Tucker, R. P., and Matus, A. 1988. Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature 336:674–677.Google Scholar
  15. 15.
    Ramon y Cajal, Y. 1911. Histologie du système nerveux de l'homme et des vertébrés Tome 2. Maloine, Paris.Google Scholar
  16. 16.
    Altman, J. 1972. Postnatal development of the cerebellar cortex in the rat. The external granular layer and the transitional molecular layer. J. Comp. Neur. 145:353–398.Google Scholar
  17. 17.
    Altman, J. 1972. Postnatal development of the cerebellar cortex in the rat. Phasis in the maturation of the Purkinje cells and of the molecular layer. J. Comp. Neurol. 145:399–464.Google Scholar
  18. 18.
    Legrand, J. 1967. Variations en fonction de l'âge de la réponse du cervelet à l'action morphogénétique de la thyroide chez le rat. Arch. Anat. Microsc. Morphol. Exp. 56:291–307.Google Scholar
  19. 19.
    Nicholson, J. L., and Altman, J. 1972. The effects of early hypo-and hyperthyroidism on the development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res. 44:13–23.Google Scholar
  20. 20.
    Lauder, J. 1978. Effects of early hypo- and hyperthyroidism on development of rat cerebellar cortex. IV. The parallel fibers. Brain Res. 142:25–39.Google Scholar
  21. 21.
    Binder, L. I., Frankfurter, A., and Rebhun, L. I. 1985. The distribution of Tau in the mammalian central nervous system. J. Cell Biol. 101:1371–1378.Google Scholar
  22. 22.
    Brion, J. P., Guilleminot, J., Couchie, D., Flament-Durand, J., and Nunez, J. 1988. Both adult and juvenile Tau microtubule-associated proteins are axon-specific in the developing and adult rat cerebellum. Neurosci. 25:139–146.Google Scholar
  23. 23.
    Caceres, A., and Kosik, K. S., 1990. Inhibition of neuronal polarity by Tau antisense oligonucleotides in primary cerebellar neurons. Nature 343:461–463.Google Scholar
  24. 24.
    Couchie, D., Legay, F., Guilleminot, J., Lebargy, F., Brion, J. P., and Nunez, J. 1990. Expression of Tau protein and Tau mRNA in the cerebellum during axonal outgrowth. Exp. Brain Res. 82:589–596.Google Scholar
  25. 25.
    Yamada, K. M., Spooner, B. S., and Wessels, M. K. 1970. Axon growth: role of microfilaments and microtubules. Proc. Natl. Acad. Sci. USA 66:1206–1212.Google Scholar
  26. 26.
    Francon, J., Fellous, A., Lennon, A. M., and Nunez, J. 1978. Requirement for factors for tubulin assembly during brain development. Eur. J. Biochem. 85:43–53.Google Scholar
  27. 27.
    Fellous, A., Lennon, A. M., Francon, J., and Nunez, J. 1979. Thyroid hormones and neurotubule assembly “in vitro” during brain development. Eur. J. Biochem. 101:365–376.Google Scholar
  28. 28.
    Lennon, A. M., Francon, J., Fellous, A., and Nunez, J. 1980. Rat, mouse and guinea pig brain development and microtubule assembly. J. Neurochem. 35:804–813.Google Scholar
  29. 29.
    Faivre, C., Legrand, C., and Rabié, A. 1983. Effects of thyroid deficiency and corrective effects of thyroxine on microtubules and mitochondria in cerebellar Purkinje cells of developing rats. Dev. Brain Res. 8:21–30.Google Scholar
  30. 30.
    Marc, C., and Rabié, A. 1985. Microtubules and neurofilaments in the sciatic nerve fibers of the developing rat: effects of thyroid deficiency. Int. J. Dev. Neurosci. 3:353–358.Google Scholar
  31. 31.
    Nunez, J. 1986. Differential expression of microtubule components during brain development. Dev. Neurosci. 8:125–141.Google Scholar
  32. 32.
    Cleveland, D. W. 1987. The multitubulin hypothesis revisited: what have we learned? J. Cell Biol. 104:381–383.Google Scholar
  33. 33.
    Lewis, S., Gwo-Shu Lee, M., and Cowan, N. J. 1985. Five tubulin isotypes and their regulated expression during development. J. Cell Biol. 101:852–861.Google Scholar
  34. 34.
    Stein, S. A., Adams, P. M., Mihahiloff, G. M., Palnitkar, M. B., Anderson, B., and Shanklin, D. R. 1985. Thyroib hormone regulation of specific mRNAs in the developing brain. Pages 59–78,in DeLong, R. G., Robbins, J., and Condliffe, P. G. (eds), Iodine and the Brain. Plenum Press, New York.Google Scholar
  35. 35.
    Olmsted, J. B. 1986. Microtubule-associated proteins. Ann. Rev. Cell Biol. 2:421–457.Google Scholar
  36. 36.
    Matus, A. 1988. Microtubule-associated proteins: their potential role in determining neuronal morphology. Ann. Rev. Neurosci. 11:29–44.Google Scholar
  37. 37.
    Bloom, G. S., Schoenfeld, T. A., and Vallee, R. B. 1984. Widespread distribution of the major polypeptide component of MAP1 (microtubule-associated protein 1) in the nervous system. J. Cell Biol. 98:320–330.Google Scholar
  38. 38.
    Schoenfield, T. A., Mc Kerracher, L., Obar, R., and Vallee, R. B. 1989. MAP1 A and MAP1 B are structurally related microtubule associated proteins with distinct developmental patterns in the CNS. J. Neurosci. 9:1712–1730.Google Scholar
  39. 39.
    Riederer, B., Cohen, R., and Matus, A. 1986. MAP5: a novel brain microtubule-associated protein under strong developmental regulation. J. Neurocytol. 15:763–775.Google Scholar
  40. 40.
    Paschal, B. M., and Vallee, R. B. 1987. Retrograde transport by the microtubule associated protein MAP1c. Nature 330:181–183.Google Scholar
  41. 41.
    Murphy, D. C., and Borisy, G. G. 1975. Association of high molecular weight proteins with microtubules and their role in microtubule assembly in vitro. Proc. Natl. Acad. Sci. USA 72:2696–2700.Google Scholar
  42. 42.
    Sloboda, R. D., Rudolph, S. A., Rosembaum, J. L., and Greengard, P. 1975. Cyclic AMP dependent phosphorylation of a microtubule-associated protein. Proc. Natl. Acad. Sci. USA 72:177–181.Google Scholar
  43. 43.
    Couchie, D., and Nunez, J. 1985. Immunological characterization of microtubule-associated proteins specific for the immature brain. FEBS lett. 188:331–335.Google Scholar
  44. 44.
    Riederer, B., and Matus, A. 1985. Differential expression of distinct microtubule-associated proteins during brain development. Proc. Natl. Acad. Sci. USA 82:6006–6009.Google Scholar
  45. 45.
    Lewis, S. A., Ivanov, I. E., Lee, G. H., and Cowan, N. J. 1989. Organization of microtubules in dendrites and axons is determined by a short hydrophobic zipper in microtubule-associated proteins MAP2 and Tau. Nature 342:398–405.Google Scholar
  46. 46.
    Papandrikopoulou, A., Doll, T., Tucker, R. P., Garner, C., and Matus, A. 1989. Embryonic MAP2 lacks the cross-linking side arm sequences and dendritic targeting signal of adult MAP2. Nature 340:650–652.Google Scholar
  47. 47.
    Caceres, A., Binder, L. I., Payne, M. R., Bender, P., Rebhun, L., and Steward, O. 1984. Differential expression of tubulin and the microtubule-associated protein MAP2 in brain tissues as revealed by monoclonal hybridoma antibodies. J. Neurosci. 4:394–410.Google Scholar
  48. 48.
    Cleveland, D. W., Hwo, S. Y., and Kirschner, M. W. 1977. Purification of tau, a microtubule-associated protein that induces assembly of tubulin from purified tubulin. J. Mol. Biol. 116:207–225.Google Scholar
  49. 49.
    Mareck, A., Fellous, A., Francon, J., and Nunez, J. 1980. Changes in composition and activity of microtubule-associated proteins during brain development. Nature 284:353–355.Google Scholar
  50. 50.
    Drubin, D. G., Caput, D., and Kirschner, M. W. 1984. Studies on the expression of the microtubule-associated protein, Tau, during mouse brain development with newly isolated complementary cDNA probes. J. Cell Biol. 98:1090–1097.Google Scholar
  51. 51.
    Neve, R. L., Harris, P., Kosik, K., Kurnit, D. M., and Donlon, T. A. 1986. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Mol. Brain Res. 1:271–280.Google Scholar
  52. 52.
    Himmler, A., Dreschel, D., Kirschner, M. W., and Martin Jr, D. W. 1989. Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol. Cell. Biol. 9:1381–1388.Google Scholar
  53. 53.
    Himmler, A. 1989. Structure of the bovine Tau gene: alternatively spliced transcripts generate a protein family. Mol. Cell. Biol. 9:1389–1396.Google Scholar
  54. 54.
    Lee, G., Cowan N., and Kirschner, M. W. 1988. The primary structure and heterogeneity of Tau protein from mouse brain. Science 239:285–288.Google Scholar
  55. 55.
    Ennulat, D. J., Liem, R. K. H., Hashim, G. A., and Shelanski, M. L. 1989. Two separate 18-amino acid domains of Tau promote the polymerization of tubulin. J. Biol. Chem. 264:5327–5330.Google Scholar
  56. 56.
    Goedert, M., Spillantini, M. G., Potier, M. C., Ulrich, J., and Crowther, R. A. 1989. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expresion of tau containing four tandem repeats: differential expresion of tau protein mRNAs in human brain. EMBO J. 8:393–399.Google Scholar
  57. 57.
    Kosik, K. S., Orecchio, L. D., Bakalis, S., and Neve, R. L. 1989. Developmentally regulated expression of specific Tau sequences. Neuron 2:1389–1397.Google Scholar
  58. 58.
    Wiche, G., Briones, E., Hirt, H., Krepler, R., Artlieb, U., and Denk, H. 1983. Differential distribution of microtubule-associated proteins MAP1 and MAP2 with microtubules of neuroblastoma cells (clone N2A) EMBO J. 2:1915–1920.Google Scholar
  59. 59.
    De Camilli, P., Miller, P. E., Navone, F., Theurkauf, W. E., and Vallee, R. B. 1984. Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence. Neurosci. 11:819–846.Google Scholar
  60. 60.
    Tucker, R. P., Binder, L. I., Viereck, C., Hemmings, B. A., and Matus, A. 1988. The sequential appearance of low and high molecular weight forms of MAP2 in the developing cerebellum. J. Neurosci. 8:4503–4512.Google Scholar
  61. 61.
    Tucker, R. P., Binder, L. I., and Matus, A. 1988. Neuronal microtubule-associated proteins in the embryonic avian spinal cord. J. Comp. Neurol. 271:44–55.Google Scholar
  62. 62.
    Francon, J., Lennon, A. M., Fellous, A., Mareck, A., Pierre, M., and Nunez, J. 1982. Heterogeneity of microtubule-associated proteins and brain development. Eur. J. Biochem. 129:465–471.Google Scholar
  63. 63.
    Nunez, J. 1988. Immature and mature variants of MAP2 and Tau proteins and neuronal plasticity. Trends Neurosci. 11:477–479.Google Scholar
  64. 64.
    Drubin, D. G., and Krischner, M. W. 1986. Tau protein function in living cells. J. Cell Biol. 103:2739–2746.Google Scholar
  65. 65.
    Couchie, D., Charrière-Bertrand, C., and Nunez, J. 1988. Expression of the mRNA for Tau proteins during brain development and in cultured neurons and astrocytes. J. Neurochem. 50:1894–1899.Google Scholar
  66. 66.
    Mangin, G., Couchie, D., Charrière-Bertrand, C., and Nunez, J. 1989. Timing of expression of Tau and its encoding mRNAs in the developing neocortex and cerebellum of the mouse. J. Neurochem. 53:45–49.Google Scholar
  67. 67.
    Nunez, J. 1985. Microtubules and brain development: the effects of thyroid hormones. Neurochem. Intl. 7:959–968.Google Scholar
  68. 68.
    Lo, M. M. S., Fieles, A. W., Norris, T. E., Caputo, C. B., Sygowski, L. G., Scott, C. W., and Goedert, M. 1990. Expression of different human Tau isoforms in fibroblasts. J. Cell Biol. 111:436a.Google Scholar
  69. 69.
    Kanai, Y., and Hirokawa, N., 1990. Tau regulates microtubule bundling in axon by alternative splicing. J. Cell Biol. 111:434a.Google Scholar
  70. 70.
    Silva, J. E., and Rudas, P. 1990. Effects of congenital hypothyroidism on microtubule-associated protein-2 expression in the cerebellum of the rat. Endorinology 126:1276–1282.Google Scholar
  71. 71.
    Nunez, J. 1988. Mechanism of action of thyroid hormone. Pages 61–80,in Cooke, B. A., King, R. J. B., and Van der Molen, H. J. (eds), Hormones and their actions. Vol. 2, Elsevier.Google Scholar
  72. 72.
    Samuels, H. H., Forman, B. M., Horowitz, Z. D., and Ye, Z. 1988. Regulation of gene expression by thyroid hormone. J. Clin. Invest. 81:957–967.Google Scholar
  73. 73.
    Sap, J., Munoz, A., Damm, K., Goldberg, Y., Ghisdael, J., Leutz, A., Beng, H., and Vennstrom, B. 1986. The c-erb A protein is a high affinity receptor for thyroid hormone. Nature 324:635–640.Google Scholar
  74. 74.
    Weinberger, C., Thomson, C. C., Ong, E. S., Lebo, R., Gruol, D. J., and Evans, R. M. 1986. The c-erb A gene encodes a thyroid hormone receptor. Nature 324:641–646.Google Scholar
  75. 75.
    Hodin, R. A., Lazar, M. A., Wintman, B. I., Darling, D. S., Koenig, R. J., Larsen, P. R., Moore, D. D., and Chin, W. W. 1989. Identification of a thyroid hormone receptor that is pituitary-specific. Science 244:76–79.Google Scholar
  76. 76.
    Bradley, D. J., Young, W. S., and Weinberger, C. 1989. Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc. Natl. Acad. Sci. USA 86:7250–7254.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Jacques Nunez
    • 1
  • Dominique Couchie
    • 1
  • Francesco Aniello
    • 1
  • Anne Marie Bridoux
    • 1
  1. 1.INSERM U 282-CNRSHôpital Henri MondorCréteilFrance

Personalised recommendations