Advertisement

Neurochemical Research

, Volume 16, Issue 1, pp 17–22 | Cite as

Foot-shock stress enhances the increase of [35S]TBPS binding in the rat cerebral cortex and the convulsions induced by isoniazid

  • Mariangela Serra
  • Enrico Sanna
  • Alessandra Concas
  • Cristina Foddi
  • Giovanni Biggio
Original Articles

Abstract

We report earlier that isoniazid and foot-shock stress individually increase the maximal number of [35S]TBPS binding sites (Bmax) measured “ex vivo” in unwashed membranes from rat cerebral cortex and that the increase due to both treatments are prevented by pretreatment “in vivo” with diazepam which alone induced a significant decrease in the total number of [35S]TBPS binding sites. In the present paper, the effect of stress was studied on both the increase in [35S]TBPS binding and the convulsant activity induced by isoniazid in unstressed rats. Isoniazid induced a time dependent increase in [35S]TBPS binding. The isoniazid-induced increase in [35S]TBPS binding was markedly potentiated by foot-shock stress. Moreover, foot-shock stress markedly reduced the latency to the appearance of generalized seizures induced by isoniazid (300 mg/kg s.c.). The results provide evidence that the “in vivo” inhibition of GABAergic transmission elicited by isoniazid results in an increase of [35S]TBPS binding in the rats cerebral cortex. The finding that stress, like isoniazid, enhances [35S]TBPS binding suggests that this treatment also inhibits the function of GABAergic synapses.

Key Words

Isoniazid diazepam stress GABAA receptor complex 35S-TBPS binding convulsions rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biggio, G., and Costa, E. 1983. Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology. Vol. 38in Advances in Biochemical Psychopharmacology, Raven Press, New York.Google Scholar
  2. 2.
    Biggio, G., and Costa, E. 1986. GABAergic Transmission and Anxicty. Vol. 41,in Advances in Biochemical Psychopharmacology, Raven Press, New York.Google Scholar
  3. 3.
    Biggio, G., and Costa, E. 1988. Cl Channels and their Modulation by Neurotransmitters and Drugs. Vol. 45,in Advances in Biochemical Psychopharmacology, Raven Press, New York.Google Scholar
  4. 4.
    Biggio, G. 1983. The action of stress, β-carbolines, diazepam and Ro 15-1788 on GABA receptors in the rat brain. Pages 105–117,in Biggio, G., and Costa, E. (eds.), Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology, Raven Press, New York.Google Scholar
  5. 5.
    Biggio, G., Concas, A., Mele, S., and Corda, M. G. 1987. Changes in GABAergic transmission induced by stress, anxiogenic and an xiolytic β-carbolines. Brain Res. Bull. 19:301–308.Google Scholar
  6. 6.
    Biggio, G., Concas, A., Serra, M., Salis, M., Corda, M. G., Nurchi, V., Crisponi, C., and Gessa, G. L. 1984. Stress and β-carbolines decrease the density of low affinity GABA binding sites: an effect reversed by diazepam. Brain Res. 305:13–18.Google Scholar
  7. 7.
    Concas, A., Salis, M., Serra, M., Corda, M. G., and Biggio, G. 1983. Ethyl-β-carboline-3-carboxylate decreases3H-GABA binding in membrane preparations of rat cerebral cortex. Eur. J. Pharmacol. 89:179–181.Google Scholar
  8. 8.
    Concas, A., Serra, M., Atsoggiu, T., and Biggio, G. 1988. Footshock stress and anxiogenic β-carbolines increase35S-TBPS binding in the rat cerebral cortex, an effect opposite to anxiolytics and GABA mimetics, J. Neurochem. 51:1868–1876.Google Scholar
  9. 9.
    Drugan, R. C., Morrow, A. L., Weizman, R., Weizman, A., Deutsch, S. I. Crawley, J. N., and Paul, S. M. 1989. Stressinduced behavioural depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. Brain Res. 487:45–51.Google Scholar
  10. 10.
    Serra, M., Concas, A., and Biggio, G. 1989. Stress like bicuculline and DMCM reduces the basal35Cluptake in the rat cortical membrane vesicles; an effect reversed by GABA. Neurosci. Research Comm. 4:41–50.Google Scholar
  11. 11.
    Bormann, J. 1988. Electrophysiology of GABAA and GABAB receptor subtypes, TINS 11:112–116.Google Scholar
  12. 12.
    Braestrup, C., Nielsen, M., Honore, T., Jensen, L. H., and Petersen, E. N. 1983. Benzodiazepine receptor ligands with positive and negative efficacy. Neuropharmacol. 22:1451–1457.Google Scholar
  13. 13.
    Chan, C. Y., and Farb, D. H. 1985. Modulation of neurotransmission action: control of the γ-aminobutyric acid response through the benzodiazepine receptor. J. Neurosci. 5:2365–2373.Google Scholar
  14. 14.
    Obata, T., and Yamamura, H. I. 1986. The effect of benzodiazepines and β-carbolines on GABA-stimulated chloride influx by membrane vesicles from the rat cerebral cortex. Bioch. Bioph. Res. Comm. 141:1–6.Google Scholar
  15. 15.
    Sanna, E., Serra, M., Pepitoni, S., and Biggio, G. 1989. Dramatic increase in nigral [35S]TBPS binding sites elicited by the degeneration of the striato-nigral GABAergic pathway: reversal by diazepam. Brain Res. 501:144–149.Google Scholar
  16. 16.
    Horton, R. W. 1980. GABA and seizures induced by inhibitors of glutamic acid decarboxylase. Brain Res. Bull. 5:605–608.Google Scholar
  17. 17.
    Serra, M., Sanna, E., and Biggio, G. 1989. Isoniazid an inhibitor of GABAergic transmission enhances [35S]TBPS binding in rat cerebral cortex. Eur. J. Pharmacol. 164:385–388.Google Scholar
  18. 18.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  19. 19.
    Haefely, W., Kulcsar, A., Mohler, H., Pieri, L., Polc, P., and Schaffner, R. 1975. Possible involvement of GABA in the central actions of benzodiazepines. Vol. 14, Pages 131–151,in Costa E. and Greengard, P. (eds) Advances in Biochemical Psychopharmacology, Raven Press, New York.Google Scholar
  20. 20.
    Curtis, D. R. 1969, The pharmacology of postsynaptic inhibition. Prog. Brain Res. 31:171–189.Google Scholar
  21. 21.
    Lothman, E. W., and Collins, R. C. 1981. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res. 218:299–318.Google Scholar
  22. 22.
    Ziylan, Y. Z., and Ates, N. 1989. Age-related changes in regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by pentylenetetrazol. Neurosci. Lett. 96:179–184.Google Scholar
  23. 23.
    Horton, W. R., Chapman, A. G., and Meldrum, B. S. 1979. Isoniazid, as a glutamic acid decarboxylase inhibitor. J. Neurochem. 33:745–750.Google Scholar
  24. 24.
    Corda, M. G., Costa, E. and Guidotti, A. 1983. Involvement of GABA in the facilitation of punishment-suppressed behaviour induced by β-carbolines in rat. Pages 121–128,in Biggio G., and Costa E. (eds.) Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology, Raven Press, New York.Google Scholar
  25. 25.
    Gee, K. W., Lawrence, L. J., and Yamamura, H. I. 1986. Modulation of the chloride ionophore by benzodiazepine receptor ligands: influence of γ-aminobutyric acid and ligand efficacy. Mol. Pharmacol. 30:218–225.Google Scholar
  26. 26.
    Squires, R. F., Casida, J. E., Richardson, M., and Saederup, E. 1983. [35S]t-butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol. Pharmacol. 23:326.Google Scholar
  27. 27.
    Seifert, J., and Casida, J. H. 1985. Regulation of [35S]butylbicyclophosphorothionate binding sites in rat brain by GABA, pyrethroid and barbiturate. Eur. J. Pharmacol. 115:191–198.Google Scholar
  28. 28.
    Supavilai, P., and Karobath, M. 1984. t-butylbicyclophosphorothionate binding sites are constituents of the γ-aminobutyric acid benzodiazepine receptor complex. J. Neurosci. 4:1193–1200.Google Scholar
  29. 29.
    Ticku, M. K., and Ramanjaneyulu, R. 1984. Ro 5-4864 inhibits the binding of35S-t-butylbicyclophosphorothionate to rat brain membranes. Life Sci. 34:631–638.Google Scholar
  30. 30.
    Concas, A., Mele, S., and Biggio, G. 1987. Foot-shock stress decreases chloride efflux from rat brain synaptoneurosomes. Eur. J. Pharmacol. 135:423–427.Google Scholar
  31. 31.
    Schwartz, R. D., Wess, M. J., Labarca, R., Skolnick, P., and Paul, S. M. 1987. Acute stress enhances the activity of the GABA receptor-gated chloride ionophore ion channel in brain. Brain Res. 411:151–155.Google Scholar
  32. 32.
    Soubrie, P., Thiebot, M. H., Jobert, A., Montastruc, J. M., Hery, F., and Hamon, M. 1980. Decreased convulsant potency of picrotoxin and pentetrazol and enhanced [3H]flunitrazepam cortical binding following stressful manipulations in rats. Brain Res. 189:505–517.Google Scholar
  33. 33.
    Trullas, R., Havoundjian, H., and Skolnick, P. 1987. Stress-induced change in t-[35S]butylbicyclophosphorothionate binding to γ-aminobutyric acid-gated chloride channels are mimicked by in vitro occupation of benzodiazepine receptors. J. Neurochem. 49:968–974.Google Scholar
  34. 34.
    Shivers, B. D., Killisch, I., Sprengel, R., Sontheimer, H., Kohler, M., Schofield, P. R., and Seeburg, P. H. 1989. Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron. 3:327–337.Google Scholar
  35. 35.
    Squires, R. F., Saederup, E., and Lajtha, A. 1988. Two groups of amino acids interact with GABAA receptors coupled to t-[35S]butylbicyclophorothionate binding sites: possible involvement with seizures associated with hereditary amino acidemias. J. Neurochem. 51:837–842.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Mariangela Serra
    • 1
  • Enrico Sanna
    • 1
  • Alessandra Concas
    • 1
  • Cristina Foddi
    • 1
  • Giovanni Biggio
    • 1
  1. 1.Department of Experimental Biology, Chair of PharmacologyUniversity of CagliariCagliariItaly

Personalised recommendations