Skip to main content
Log in

Foot-shock stress enhances the increase of [35S]TBPS binding in the rat cerebral cortex and the convulsions induced by isoniazid

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We report earlier that isoniazid and foot-shock stress individually increase the maximal number of [35S]TBPS binding sites (Bmax) measured “ex vivo” in unwashed membranes from rat cerebral cortex and that the increase due to both treatments are prevented by pretreatment “in vivo” with diazepam which alone induced a significant decrease in the total number of [35S]TBPS binding sites. In the present paper, the effect of stress was studied on both the increase in [35S]TBPS binding and the convulsant activity induced by isoniazid in unstressed rats. Isoniazid induced a time dependent increase in [35S]TBPS binding. The isoniazid-induced increase in [35S]TBPS binding was markedly potentiated by foot-shock stress. Moreover, foot-shock stress markedly reduced the latency to the appearance of generalized seizures induced by isoniazid (300 mg/kg s.c.). The results provide evidence that the “in vivo” inhibition of GABAergic transmission elicited by isoniazid results in an increase of [35S]TBPS binding in the rats cerebral cortex. The finding that stress, like isoniazid, enhances [35S]TBPS binding suggests that this treatment also inhibits the function of GABAergic synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Biggio, G., and Costa, E. 1983. Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology. Vol. 38in Advances in Biochemical Psychopharmacology, Raven Press, New York.

    Google Scholar 

  2. Biggio, G., and Costa, E. 1986. GABAergic Transmission and Anxicty. Vol. 41,in Advances in Biochemical Psychopharmacology, Raven Press, New York.

    Google Scholar 

  3. Biggio, G., and Costa, E. 1988. Cl Channels and their Modulation by Neurotransmitters and Drugs. Vol. 45,in Advances in Biochemical Psychopharmacology, Raven Press, New York.

    Google Scholar 

  4. Biggio, G. 1983. The action of stress, β-carbolines, diazepam and Ro 15-1788 on GABA receptors in the rat brain. Pages 105–117,in Biggio, G., and Costa, E. (eds.), Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology, Raven Press, New York.

    Google Scholar 

  5. Biggio, G., Concas, A., Mele, S., and Corda, M. G. 1987. Changes in GABAergic transmission induced by stress, anxiogenic and an xiolytic β-carbolines. Brain Res. Bull. 19:301–308.

    Google Scholar 

  6. Biggio, G., Concas, A., Serra, M., Salis, M., Corda, M. G., Nurchi, V., Crisponi, C., and Gessa, G. L. 1984. Stress and β-carbolines decrease the density of low affinity GABA binding sites: an effect reversed by diazepam. Brain Res. 305:13–18.

    Google Scholar 

  7. Concas, A., Salis, M., Serra, M., Corda, M. G., and Biggio, G. 1983. Ethyl-β-carboline-3-carboxylate decreases3H-GABA binding in membrane preparations of rat cerebral cortex. Eur. J. Pharmacol. 89:179–181.

    Google Scholar 

  8. Concas, A., Serra, M., Atsoggiu, T., and Biggio, G. 1988. Footshock stress and anxiogenic β-carbolines increase35S-TBPS binding in the rat cerebral cortex, an effect opposite to anxiolytics and GABA mimetics, J. Neurochem. 51:1868–1876.

    Google Scholar 

  9. Drugan, R. C., Morrow, A. L., Weizman, R., Weizman, A., Deutsch, S. I. Crawley, J. N., and Paul, S. M. 1989. Stressinduced behavioural depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. Brain Res. 487:45–51.

    Google Scholar 

  10. Serra, M., Concas, A., and Biggio, G. 1989. Stress like bicuculline and DMCM reduces the basal35Cluptake in the rat cortical membrane vesicles; an effect reversed by GABA. Neurosci. Research Comm. 4:41–50.

    Google Scholar 

  11. Bormann, J. 1988. Electrophysiology of GABAA and GABAB receptor subtypes, TINS 11:112–116.

    Google Scholar 

  12. Braestrup, C., Nielsen, M., Honore, T., Jensen, L. H., and Petersen, E. N. 1983. Benzodiazepine receptor ligands with positive and negative efficacy. Neuropharmacol. 22:1451–1457.

    Google Scholar 

  13. Chan, C. Y., and Farb, D. H. 1985. Modulation of neurotransmission action: control of the γ-aminobutyric acid response through the benzodiazepine receptor. J. Neurosci. 5:2365–2373.

    Google Scholar 

  14. Obata, T., and Yamamura, H. I. 1986. The effect of benzodiazepines and β-carbolines on GABA-stimulated chloride influx by membrane vesicles from the rat cerebral cortex. Bioch. Bioph. Res. Comm. 141:1–6.

    Google Scholar 

  15. Sanna, E., Serra, M., Pepitoni, S., and Biggio, G. 1989. Dramatic increase in nigral [35S]TBPS binding sites elicited by the degeneration of the striato-nigral GABAergic pathway: reversal by diazepam. Brain Res. 501:144–149.

    Google Scholar 

  16. Horton, R. W. 1980. GABA and seizures induced by inhibitors of glutamic acid decarboxylase. Brain Res. Bull. 5:605–608.

    Google Scholar 

  17. Serra, M., Sanna, E., and Biggio, G. 1989. Isoniazid an inhibitor of GABAergic transmission enhances [35S]TBPS binding in rat cerebral cortex. Eur. J. Pharmacol. 164:385–388.

    Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  19. Haefely, W., Kulcsar, A., Mohler, H., Pieri, L., Polc, P., and Schaffner, R. 1975. Possible involvement of GABA in the central actions of benzodiazepines. Vol. 14, Pages 131–151,in Costa E. and Greengard, P. (eds) Advances in Biochemical Psychopharmacology, Raven Press, New York.

    Google Scholar 

  20. Curtis, D. R. 1969, The pharmacology of postsynaptic inhibition. Prog. Brain Res. 31:171–189.

    Google Scholar 

  21. Lothman, E. W., and Collins, R. C. 1981. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res. 218:299–318.

    Google Scholar 

  22. Ziylan, Y. Z., and Ates, N. 1989. Age-related changes in regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by pentylenetetrazol. Neurosci. Lett. 96:179–184.

    Google Scholar 

  23. Horton, W. R., Chapman, A. G., and Meldrum, B. S. 1979. Isoniazid, as a glutamic acid decarboxylase inhibitor. J. Neurochem. 33:745–750.

    Google Scholar 

  24. Corda, M. G., Costa, E. and Guidotti, A. 1983. Involvement of GABA in the facilitation of punishment-suppressed behaviour induced by β-carbolines in rat. Pages 121–128,in Biggio G., and Costa E. (eds.) Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology, Raven Press, New York.

    Google Scholar 

  25. Gee, K. W., Lawrence, L. J., and Yamamura, H. I. 1986. Modulation of the chloride ionophore by benzodiazepine receptor ligands: influence of γ-aminobutyric acid and ligand efficacy. Mol. Pharmacol. 30:218–225.

    Google Scholar 

  26. Squires, R. F., Casida, J. E., Richardson, M., and Saederup, E. 1983. [35S]t-butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol. Pharmacol. 23:326.

    Google Scholar 

  27. Seifert, J., and Casida, J. H. 1985. Regulation of [35S]butylbicyclophosphorothionate binding sites in rat brain by GABA, pyrethroid and barbiturate. Eur. J. Pharmacol. 115:191–198.

    Google Scholar 

  28. Supavilai, P., and Karobath, M. 1984. t-butylbicyclophosphorothionate binding sites are constituents of the γ-aminobutyric acid benzodiazepine receptor complex. J. Neurosci. 4:1193–1200.

    Google Scholar 

  29. Ticku, M. K., and Ramanjaneyulu, R. 1984. Ro 5-4864 inhibits the binding of35S-t-butylbicyclophosphorothionate to rat brain membranes. Life Sci. 34:631–638.

    Google Scholar 

  30. Concas, A., Mele, S., and Biggio, G. 1987. Foot-shock stress decreases chloride efflux from rat brain synaptoneurosomes. Eur. J. Pharmacol. 135:423–427.

    Google Scholar 

  31. Schwartz, R. D., Wess, M. J., Labarca, R., Skolnick, P., and Paul, S. M. 1987. Acute stress enhances the activity of the GABA receptor-gated chloride ionophore ion channel in brain. Brain Res. 411:151–155.

    Google Scholar 

  32. Soubrie, P., Thiebot, M. H., Jobert, A., Montastruc, J. M., Hery, F., and Hamon, M. 1980. Decreased convulsant potency of picrotoxin and pentetrazol and enhanced [3H]flunitrazepam cortical binding following stressful manipulations in rats. Brain Res. 189:505–517.

    Google Scholar 

  33. Trullas, R., Havoundjian, H., and Skolnick, P. 1987. Stress-induced change in t-[35S]butylbicyclophosphorothionate binding to γ-aminobutyric acid-gated chloride channels are mimicked by in vitro occupation of benzodiazepine receptors. J. Neurochem. 49:968–974.

    Google Scholar 

  34. Shivers, B. D., Killisch, I., Sprengel, R., Sontheimer, H., Kohler, M., Schofield, P. R., and Seeburg, P. H. 1989. Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron. 3:327–337.

    Google Scholar 

  35. Squires, R. F., Saederup, E., and Lajtha, A. 1988. Two groups of amino acids interact with GABAA receptors coupled to t-[35S]butylbicyclophorothionate binding sites: possible involvement with seizures associated with hereditary amino acidemias. J. Neurochem. 51:837–842.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra, M., Sanna, E., Concas, A. et al. Foot-shock stress enhances the increase of [35S]TBPS binding in the rat cerebral cortex and the convulsions induced by isoniazid. Neurochem Res 16, 17–22 (1991). https://doi.org/10.1007/BF00965822

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965822

Key Words

Navigation