Neurochemical Research

, Volume 16, Issue 1, pp 1–10 | Cite as

The 5-HT1A receptor: an overview of recent advances

  • Salah El Mestikawy
  • Annick Fargin
  • John R. Raymond
  • Henri Gozlan
  • Mark Hnatowich


Progress in the field of neuronal receptor research has accelerated during the last few years due to developments in pharmacology and molecular biology. This is particularly true in the case of the serotonin 5-HT1A receptor. In 1983 the very selective, high affinity 5-HT1A agonist 8-OH-DPAT was developed which allowed the pharmacology and distribution of the 5-HT1A receptor in the central nervous system of the rat and man to be extensively characterized. By 1987, the gene encoding this receptor protein was cloned and sequenced, allowing not only elucidation of its structure, but also better insight into the nature of its coupling to transmembrane signal transduction systems. Thus in a short period of time considerable knowledge has accumulated on how serotonin exerts its functions in the central nervous system via the 5-HT1A receptor. In the present review we will briefly discuss some of the latest developments regarding the 5-HT1A receptor.

Key Words

Serotonin 5-HT 5-HT receptor subtype 5-HT1 receptor 8-OH-DPAT receptor purification receptor cloning antipeptide antibodies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, P. R. Zhou, Q. Y., Van Tol, H. H. M. Bunzow, J. R., and Civelli, O. Cloning, mRNA tissue distribution and functional expression of the rat 5-HT1A receptor gene. J. Biol. Chem. 265:5835–5832.Google Scholar
  2. 2.
    Andrade, R., Malenka, R. C., and Nicoll, R., 1987. A G protein couples serotonin and GABAB receptor to the same channels in the hippocampus. Science. 234:1261–1265.Google Scholar
  3. 3.
    Andrade, R., and Nicoll, R. 1987. Novel anxiolytics discriminate between postsynaptic serotonin receptors of he rat hippocampus. Naunyn-Schmiedeberg Arch Pharmacol. 336:5–10.Google Scholar
  4. 4.
    Andrade, R., and Nicoll, R. 1987. Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hyppocampus recorded in vitro. J. Physiol (London). 349:99–125.Google Scholar
  5. 5.
    Benovic, J. R., Bouvier, M., Caron, M. G., and Lefkowitz, R. J. 1988. Regulation of adenylyl cyclase-coupled β-adrenergic receptors. Ann. Rev. Cell Biol. 4:405–428.Google Scholar
  6. 6.
    Bockaert, J., Dumuis, A., Bouhelal, R., Sebben, M., and Cory, R. N. 1987. Piperazine derivatives including the putative anxiolytic drugs buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn Schmiedeberg Arch. Pharmacol. 335:588–892.Google Scholar
  7. 7.
    Bradley, P. B., Engel, G., Feniuk, W., Fozard, J. W., Humphrey, P. P. A., Midelmiss, D. N., Mylecherane, E. J., Richardson, B. P. and Saxena, P. R. 1986. Nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacol. 24:563–576.Google Scholar
  8. 8.
    Dourish, C. T., Ahlenius, S., and Huston, P. H. 1987. (eds.) Brain 5-HT1A receptors. Ellis horwood series in biomedicine Ltd., Chichester.Google Scholar
  9. 9.
    Chopin, P., and Briley, M. 1987 Animal models of anxiety: the effect of compounds that modify 5-HT neurotransmission. TIPS. 8:383–388.Google Scholar
  10. 10.
    Claustre, Y., Bénavides, J., and Scatton B. 1988. 5-HT1A receptors agonists inhibit carbachol-induced stimulation of phosphoinositide turnover in the rat hippocampus. Eur. J. Pharmacol. 149:149–153.Google Scholar
  11. 11.
    Colino, A., and Halliwell, J. V. 1987. Differential modulation of three separate K-conductances in hippcampal CA1 neurons by serotonin. Nature 328:73–77.Google Scholar
  12. 12.
    Cossery, J. M., Gozlan, H., Spampinato, U., Perdicakis, C., Guillaumet, G., Pichat, L., and Hamon, M. 1987. The selective labelling of central 5-HT1A receptor binding site by (3)H-5-Methoxy-3-)di-n-propylamino)chroman. Eur. J. Pharmacol. 140:143–155.Google Scholar
  13. 13.
    Daval, G., Vergé, D., Basbaum, A. I., Bourgoin, S., and Hamon, M. 1987. Autoradiographic evidence of serotonin 1 binding sites on primary afferent fibres in the dorsal horn of the rat spinal cord. Neuroscience Letters. 83:71–76.Google Scholar
  14. 14.
    De Vivo M. and Maayani, S. 1986. Characterization of the 5-HT1A receptor mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinca pig and rat hippocampal membranes. J. Pharmacol. Exp. Ther. 238:248–253.Google Scholar
  15. 15.
    Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanovski, M. A., Benett, C. D., Rands, E., Diehl, R. E., Mumford R. A., Slater, E. E., Sigal, I. S., Caron, M. G., Lefkowitz, R. J., and Strader, C. D. 1986. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321:75–79.Google Scholar
  16. 16.
    Dixon, R. A. F., Sigal, I. F., Rands, E., Register, R. B., Candelore, M. R., Blake A. D., and Strader, C. D. 1987. Ligand binding to the β-adrenergic receptor involves its rhodopsin-like core. Nature. 326:73–77.Google Scholar
  17. 17.
    Dumuis, A., Sebben, M., and Bockaert, J., 1988. Pharmacology of 5-hydroxytyptamine 1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture. Mol. Pharmacol. 33:176–186.Google Scholar
  18. 18.
    Dumuis, AZ., Sebben, M., Bouhelal, R., Sebben, M., Cory, R., and Bockaert, J. 1988. A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol. Pharmacol. 34:880–887.Google Scholar
  19. 19.
    Eide, P. K., Hole, K., and Broch, O. G. 1988. 5-HT depletion with 5,7-DHT, PCA and PCPA in mice: differential effects on the sensitivity to 5-MeODMT, 8-OH-DPAT and 5-HTP as measured by two nociceptive tests. Brain Research. 440:42–52.Google Scholar
  20. 20.
    El Mestikawy, S., Cognard, C., Gozlan, H., and Hamon, M. 1988. Pharmacological and biochemical characterization of rat hippocampal 5-HT1A receptors solubilized by 3(3-(cholamidopropyl) dimethyl-ammonio)-1-propane sulfonate (CHAPS). J. Neurochem. 51:1031–1040.Google Scholar
  21. 21.
    El Mestikawy, S., Taussig, D., Gozlan, H., Emerit, M. B., Ponchant, M., and Hamon, M. 1989. Chromatographic analysis of the 5-HT1A receptor solubilized from the rat hippocampus. J. Neurochem. 53:1555–1566.Google Scholar
  22. 22.
    El Mestikawy, S., Riad, Laporte, A. M., Vergé, D., Daval, G., Gozlan, H., and Hamon, M. 1990. Production of specific anti-rat 5-HT1A receptor antibodies in rabbits injected with a synthetic peptide. Neurosci. Lett. 118:189–192.Google Scholar
  23. 23.
    Emerit M. B. E. Mestikawy, S., Gozlan, H., Cossery, J. M., Besselievre, R. Marquet, A., and Hamon, M. 1987. Identification of the 5-HT1A receptor binding subunit in the rat brain membranes using the photoaffinity probe, (3H)8-methoxy-2[N-n-propyl, N, 3-(2-nitro-4-azidophenyl) aminopropyl] aminotetralin. J. Neurochem. 49:373–380.Google Scholar
  24. 24.
    Emerit, M. B., El Mestikawy, S., Gozlan, H., Rouot, B., and Hamon, M. 1990. Physical evidence of the coupling of solubilized 5-HT1A binding sites with G regulatory proteins. Biochem. Pharmacol. 39:7–18.Google Scholar
  25. 25.
    Fargin, A., Raymond, J. R., Lohse, M. J., Kobilka, B. K., Caron, M. G., and Lefkowitz, R. J. 1988. The genomic clone G21 which resembles a β-adrenergic receptor sequence encodes the human 5-HT1A receptor. Nature 335:358–360.Google Scholar
  26. 26.
    Fargin, A., Raymond, J. R., Regan, J. W., Cotecchia, S., Lefkowitz, R. J., and Caron, M. 1989. Effector coupling mechanisms of the cloned 5-HT1A receptor. J. Biol. Chem. 2645:14848–14852.Google Scholar
  27. 27.
    Frielle, T., Collins, S., Daniel K. W., Caron, M. G., Lefkowitz, R. J., and Kobilka, B. K. 1987. Cloning of the cDNA for the human β1-adrenergic receptor. Proc. Natl. Acad. Sci USA. 84:7920–7924.Google Scholar
  28. 28.
    Frielle, T., Daniel, K., Caron, M. G., and Lefkowitz, R. J. 1988. Structural basis of β-adrenergic receptor subtype specificty studied with chimeric β12 receptors. Proc. Natl. Acad. Sci. USA. 85:9494–9498.Google Scholar
  29. 29.
    Gaddum, H., and Picarelli, Z. P. 1957. Two kinds of tryptamine receptor. Brit. J. Pharmacol. Chemother. 12:323–328.Google Scholar
  30. 30.
    Glaser, T., and Traber, J. 1985. Binding of the putative anxiolytic TVX Q-7821 to hippocampal 5-hydroxytryptamine (5-HT) recognition sites. Naunyn-Schmiedeberg Arch. Pharmacol. 329:211–215.Google Scholar
  31. 31.
    Gozlan, H., El Mestikawy, S., Pichat, S., Glowinski, J., and Hamon, M. 1983. Identification of presynaptic autoreceptors serotonin autoreceptors using a new ligand:3H-PAT. Nature 305:140–142.Google Scholar
  32. 32.
    Gozlan, H., Emerit, M. B., Hall, M. D., Nielsen, M. and Hamon, M. 1987. In situ molecular sizes of the various types of 5-HT binding sites in the rat brain. Biochem. Pharmacol. 35:1891–1897.Google Scholar
  33. 33.
    Gozlan, H., Emerit, M. B. El Mestikawy, S., Cossery, J. M., Marquet, A., Besselièvre, R., and Hamon, M. 1988 Photoaffinity labeling and solubilization of the central 5-HT1A receptor binding site. J. Recept Res. 7:195–221.Google Scholar
  34. 34.
    Hall, M. D., El Mestikawy, S., Emerit, M. B., Pichat, L., Hamon, M., and Gozlan, H. 1985. [3H]8-hydroxy-2-(di-n-propylammino)tetralin binding to pre- and postsynaptic 5-hydroxytryptamine sites in various region of the rat brain. J. Neurochem. 44:1685–1696.Google Scholar
  35. 35.
    Hamon, M., Fataccini, C. M., Adrien, J., Galissot, M. C., Martin, P., and Gozlan, H. 1988. Alterations of central serotonin and dopamine turnover in rats treated with ipsapirone and other 5-HT1A agonists with potential anxiolytic properties. J. Pharmac. Exp. Ther. 246:745–752.Google Scholar
  36. 36.
    Hamon, M., Emerit, M. B., El Mestikawy, S., Gallissot, M. C., and Gozlan, H. Regional differences in the transduction mechanisms of serotonin receptors in the namalian brain. In: “Cardiovascular pharmacology of 5-HT: prospective therapeutic application”, ed. P.R. Saxena, Kluer, Acad. Publ. B. V. Dordrecht (in press).Google Scholar
  37. 37.
    Herrick-Davis, K., and Titeler, M. 1988. (3H) Spiroxatrine: a 5-HT1A radioligand with agonist binding properties. J. Neurochem. 50:528–533.Google Scholar
  38. 38.
    Hoyer, D. 1988. Functional correlates of serotonin 5-HT1 recognition sites, submitted. J. Recept. Res. 8:59–81.Google Scholar
  39. 39.
    Hoyer, D., Engel, G., and Kalkman, H. O. 1985. Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H] 5-HT, [3H] 8-OH-DPAT, (−) [125I] iodocyanopindolol and [3H]mesulergine. Eur. J. Pharmacol. 118:13–23.Google Scholar
  40. 40.
    Hoyer, D., Pazos, A., Probst, A., and Palacios, J. M. 1986. Serotonin receptors in human brain I: Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain research. 376:85–96.Google Scholar
  41. 41.
    Julius, D., Mac Dermott, A. B., Axel, R., and Jessel, T. M. 1988. Molecular characterization of a functional cDNA encoding the serotonin 1C receptor. Science 241:558–564.Google Scholar
  42. 42.
    Kobilka, B. K., Dixon, R. A. F., Frielle, T., Dohlman, H. G., Bolanowski, M. A., Sigal, I. S., Yang-Feng, T., Francke, U., Caron, M. G., and Lefkowitz, R. J. 1987. cDNA for the human β2-adrenergic receptor: a protein with multiple spanning domains encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc. Natl. Acad. Sci. USA. 84:46–50.Google Scholar
  43. 43.
    Kobilka, B. K., Frielle T., Collins, S., Yang-Feng, T., Kobilka, T. S., Francke, U., Lefkowitz, R.J., and Caron, M. G. 1987. Identification of an intronless gene which encodes a potential member of the family of G protein-coupled receptors. Nature. 329:75–79.Google Scholar
  44. 44.
    Krupinski, J., Coussen F., Bakalyar, H. A., Tang, W. J., Feinstein, P. G., Orth, K., Slaughter, C., Reed, R. R., and Gilman, A. 1989. Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science. 244:1558–1564.Google Scholar
  45. 45.
    Leeb-Lundberg, L. M. F., Cotecchia, S., Lomasney, J., DeBernardis, J. F., Lefkowitz, R. J., and Caron, M. 1985. Phorbol esters promote α1-adrenergic receptors phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc. Natl. Acad. Sci. USA. 82:5651–5655.Google Scholar
  46. 46.
    Leonhart, S., Herrick-Davis, K. and Titeler, M. 1989. Detection of a novel serotonin receptor subtype (5-HT1E) in human brain: interaction with a GTP-binding protein. J Neurochem. 53:465–471.Google Scholar
  47. 47.
    Leysen, J. (in press). Neuromethods, neuropharmacology II “Drugs as tools in neurotransmitter research,In Boulton, A. A., Baker, G. B. and Jourio, A. V., Clifton (eds) Human press. The use of 5-HT receptor agonists and antagonists for the characterization of their respective sites.Google Scholar
  48. 48.
    Makman, M. H., Dvorkin, B., and Crain, S. M. 1988. Modulation of adenylate cyclase activity of mouse spinal cord-ganglion explants by opioids, serotonin and pertussis toxin. Brain Res. 445:303–313.Google Scholar
  49. 49.
    Marcinkiewicz, M., Verge, D., Gozlan, H., Pichat, L., and Hamon, M. 1984. Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. brain Res. 291:159–163.Google Scholar
  50. 50.
    Markstein, R., Hoyer, D., and Engel, G. 1986. 5-HT1A receptors mediate stimulation of adenylate cyclase in the rat hippocampus. Naunym Schmiedeberg Arch. pharmac. 333:335–341.Google Scholar
  51. 51.
    Middleton, J. P., Raymond, J. R., Whorton, A. R., and Dennis, V. W. 1990. Short-term regulation of Na+/K+ATPase by recombinant 5-HT1A receptor expressed in HeLa cells. J. Clin. Invest. 86:1799–1805, In Press.Google Scholar
  52. 52.
    Oliveras, J. L., Redjemi, F., Guibaud G. and Besson J. M. 1975. Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain. I:139–145.Google Scholar
  53. 53.
    Norman, A. B., Battaglia, G. and Creese, I. 1985. (3H]WB4101 labels the 5-HT1A receptor subtype in rat brain. Mol., Pharmacol. 28:487–494.Google Scholar
  54. 54.
    Pazos, A. and Palacios, J. M. 1985. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I Serotonin-1 receptors. Brain Res. 346:205–230.Google Scholar
  55. 55.
    Pazos, A., Probst, A. and Palacios, J. M. 1986. Serotonin receptors in the human brain. III Autoradiographic maping of serotonin-1 receptors. Neurosci. 21:97–122.Google Scholar
  56. 56.
    Pedigo, N. W., Yamamura, H. I. and Nelson 1981. Discrimination of multiple (3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J. Neurochem. 36:220–226.Google Scholar
  57. 57.
    Peroutka, S. J., and Snyder, S. H. 1979. Multiple serotonin receptors: differential binding of (3H]5-HT, (3H)lysergic acid diethylamide and (3H)spiroperidol. Mol. Pharmacol. 16:687–699.Google Scholar
  58. 58.
    Pritchett, D. B., Bach, A. W., Wozny, M., Taleb O., Dal Toso, R., Shih, J., and Seeburg, P. 1988. Structure and functional expression of cloned rat 5-HT2 receptor. Embo.J. 7:4135–4140.Google Scholar
  59. 59.
    Ransom, R. W., Asarch, K. B., and Shih, J. 1986. (3H)1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl) piperazine: a selective radioligand for 5-HT1A receptors in rat brain. J. Neurochem. 46:68–75.Google Scholar
  60. 60.
    Ransom, R. W., Asarch, K. B., and Schih,J. 1986. Phototaffinity labeling of the 5-HT1A receptor in rat hippocampus. J. Neurochem. 47:1066–1072.Google Scholar
  61. 61.
    Raymond, J. R., Fargin, A., Loshe, M., Senogles, S., Regan, J. W., Lefkowitz, R. J., and Caron, M. G. 1989. Identification of the ligand binding subunit of the human 5-HT1A receptor. Mol. Pharmacol. 36:15–21.Google Scholar
  62. 62.
    Raymond, J. R., Middleton, J. P., and Dennis, V. W. HeLa cells demonstrate cAMP-inhibitable sodium-dependent phosphate uptake. 1990. Am. J. Physiol. 258 F433–F437.Google Scholar
  63. 63.
    Raymond, J. R., Fargin, A. F. Middleton, J. P., Graff, J. M., Haupt, D. M., Caron, M. G. Lefkowitz, R. J., and Dennis, V. W. The human 5-HT1A receptor expressed in HeLa cells stimulates sodium-dependent phosphate uptake via protein kinase C. 1990. J. Biol. Chem. 264:21943–21950.Google Scholar
  64. 64.
    Schoeffter, P., and Hoyer, D. 1988. Centrally acting hypotensive agents with affinity to 5-HT1A binding sites inhibit forskolinstimulated adenylate cyclase activity in calf hippocampus. Brit. J. Pharmacol. 85:975–985.Google Scholar
  65. 65.
    Schulman, H., and Lou, L. 1989. Multifunctional Ca2+/calmodulin-dependent protein Kinase: domain structure and regulation. TIBS. 14:62–66.Google Scholar
  66. 66.
    Shenker, A., Maayani, S., Weinstein, H., and Green, J. P. 1985. Two 5-HT receptors linked to adenylate cyclase in guinea pig hippocampus are discriminated by 5-carboxamidotryptamine and spiperone. Eur. J. Pharmac. 109:427–429.Google Scholar
  67. 67.
    Sprouse, J. S., and Aghajanian, G. K. 1986. (−)Propanolol blocks the inhibition of the sertoninergic, dorsal raphe cell firing by 5-HT1A selective agonists. Eur. J. Pharmac. 128:295–298.Google Scholar
  68. 68.
    Sprouse, J. S., and Aghajanian, G. K. 1987. Electrophysiological responses of serotoninergic dorsal raphe neurons to the 5-HT1A and 5-HT1B agonists. Synapse. 1:3–9.Google Scholar
  69. 69.
    Traber, J., and Glaser, T. 1987. 5-HT1A receptor-related anxiolytics. TIPS. 8:432–437.Google Scholar
  70. 70.
    Vergé, D., Daval, G., Maicinkiewicz, M., Patey, A., El Mestikawy, S., Gozlan, H., and Hamon, M. 1986. Quantitative autoradiography of multiple 5-HT1 receptors subtypes in the brain of control and 5,7-DHT treated rats. J. Neurosci. 6:3474–3482.Google Scholar
  71. 71.
    Weiss, S., Sebben, M., Kemp, D. E., and Bockaert, J. 1986. Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons. Eur. J. Pharmac. 120:227–230.Google Scholar
  72. 72.
    Weissmann-Nanopoulos, D., Mach, E., Magre, J., Demassey, Y., and Pujol, J. F. 1985. Evidence for the localization of 5-HT1A binding sites on serotonin containing neurons in the raphe dorsalis and the raphe centralis nuclei of the rat brain. Neurochem. Int. 7:1061–1072.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Salah El Mestikawy
    • 1
    • 2
    • 5
  • Annick Fargin
    • 2
    • 5
  • John R. Raymond
    • 3
    • 5
    • 4
  • Henri Gozlan
    • 1
  • Mark Hnatowich
    • 2
    • 5
  1. 1.INSERM U288, Neurobiologie cellulaire et fonctionnelleFacultéde Médecine Pitié-SalpêtrièreParisFrance
  2. 2.Dept. of Medicine (Cardiology)Duke University Medical CenterDurhamUSA
  3. 3.Department of Medicine (Nephrology)Duke University Medical CenterDurhamUSA
  4. 4.Department of Veterans Affairs Medical CenterDurhamUSA
  5. 5.Howard Hughes Medical InstituteDurhamUSA

Personalised recommendations