Neurochemical Research

, Volume 15, Issue 10, pp 981–985 | Cite as

Lipid order and composition of synaptic membranes in experimental diabetes mellitus

  • Arshag D. Mooradian
  • Frank Dickerson
  • Thomas L. Smith
Original Articles


The effect of diabetes in rats on lipid composition and order of synaptosomal membranes (SM) was determined in streptozotocin-induced diabetic rats after 6 weeks of chronic hyperglycemia. The cholesterol content was slightly, but not significantly, higher in diabetic SM (0.287±0.042 vs. 0.209±0.061 μmol/mg protein). The phospholipid concentration in diabetic SM was significantly increased (0.515±0.042 vs. 0.305±0.041 μmol/mg protein;P<0.005). Neither the molar ratios of cholesterol to phospholipids in the SM nor the fatty acid composition of the SM was significantly altered with diabetes. Diabetes did not affect membrane order or the thermotropic transition temperature of the SM as determined fluorometrically. On the other hand, the SM of diabetic rats had significantly increased concentration of lipid peroxidation products, namely conjugated dienes (the calculated O.D./μmol phospholipids was 11.56±1.83 in controls and 19.95 ±4.1 in diabetic ratsP<0.01). Despite the accumulation of lipid peroxidation byproducts in SM of diabetic rats the overall membrane order and the cholesterol to phospholipid molar ratio do not appear to be significantly altered.

Key Words

Synaptosome lipid order lipid composition conjugated dienes diabetes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mooradian A. D. 1988. Diabetic complications of the central nervous system. Endocrine Rev. 9:346–356.Google Scholar
  2. 2.
    Mooradian A. D., Perryman K., Fitten J., Kavonian G., and Morley J. E. 1988. Cortical function in elderly non-insulin dependent diabetic patients: Behavioral and electrophysiological studies. Arch. Int. Med. 148:2369–2372.Google Scholar
  3. 3.
    Flood J. M., Morley J. E., and Mooradian A. D. 1987. Learning and memory impairment in diabetic mice. Fed. Proc. 46:1279.Google Scholar
  4. 4.
    Mooradian A.D. 1988. Tissue specificity of premature aging in diabetes mellitus. The role of cellular replicative capacity. J. Am. Geriatr. Soc. 36:831–839.PubMedGoogle Scholar
  5. 5.
    Calderini G., Bonetti A. C., Battistella A., Crews F. T., and Toffano G. 1983. Biochemical changes of rat brain membranes with aging. Neurochem. Res. 8:483–492.PubMedGoogle Scholar
  6. 6.
    DeRobertis E. 1967. Ultrastructure and cytochemistry of the synaptic region. Science 156:907–914.PubMedGoogle Scholar
  7. 7.
    Harris R. A., Baxter D. M., Mitchell M. A., and Hitzemann R. J. 1984. Physical properties and lipid composition of brain membranes from ethanol tolerant-dependent mice. Mol. Pharmacol. 25:401–409.PubMedGoogle Scholar
  8. 8.
    Shinitzky M., and Barenholz Y. 1978. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta. 515:367–394.PubMedGoogle Scholar
  9. 9.
    Folch J., Lees M., and Sloane-Stanley G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.PubMedGoogle Scholar
  10. 10.
    Zak B. 1957. Simple rapid microtechnic for serum total cholesterol. Am. J. Clin. Pathol. 27:583–587.PubMedGoogle Scholar
  11. 11.
    Raheja R. K., Kaur C., Singh A., and Bhatia I. S. 1973. New colorimetric method for the quantitative estimation of phospholipids without acid digestion. J. Lipid Res. 14:695–697.PubMedGoogle Scholar
  12. 12.
    Gartner S. L., and Vahouney G. 1972. Effects of epinephrine and cyclic 3′, 5′-AMP on perfused rat epinephrine and cyclic 3′, 5′-AMP in perfused rat hearts. Am. J. Physiol. 222:1121–1124.PubMedGoogle Scholar
  13. 13.
    Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  14. 14.
    Gillery P., Monboissa J-C., Maquart F. X., and Borel J. P. 1989. Does oxygen free radical increased formation explain long term complications of diabetes mellitus. Med. Hypothesis 29:47–50.Google Scholar
  15. 15.
    Lunec J., Halloran S. P., White A. G., and Dormandy T. L. 1981. Free radical oxidation (peroxidation) products in serum and synovial fluid in rheumatoid arthritis. J. Rheumatol. 8:233–245.PubMedGoogle Scholar
  16. 16.
    Hartnell J. M., Storrie M. D., and Mooradian A. D. 1990. Tissue specificity of alkali-induced DNA unwinding rate in diabetes. Diabetes 39:345–353.Google Scholar
  17. 17.
    Mooradian A. D. 1987. The blood-brain barrier choline transport is reduced in diabetic rats. Diabetes 36:1094–1097.PubMedGoogle Scholar
  18. 18.
    Murthy A. S. N., and Baquer N. Z. 1983. Changes in malic enzyme in brain during alloxan diabetes. Indian J. Biochem. Biophys. 20:53–61.PubMedGoogle Scholar
  19. 19.
    Lin C. J., Peterson R., and Eichberg J. 1985. The fatty acid composition of glycerolipids in nerve, brain, and other tissues of the streptozotocin diabetic rats. Neurochem. Res. 10:1453–1465.PubMedGoogle Scholar
  20. 20.
    King M. E., and Spector A. A. 1978. Effect of specific fatty acyl enhancements on membrane physical properties detected with a spin label probe. J. Biol. Chem. 253:6493–6501.PubMedGoogle Scholar
  21. 21.
    Van Blitterswijk W. J., Van Hoeven R. P., and Van der Meer B. W. 1981. Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements. Biochim. Biophys. Acta. 644:323–332.PubMedGoogle Scholar
  22. 22.
    Baba Y., Kai M., Kamada T., Setoyama S., and Otsuji S. 1979. Higher levels of erythrocyte microviscosity in diabetes. Diabetes 28:1138–1140.PubMedGoogle Scholar
  23. 23.
    Vague P., and Juhan I. 1983. Red cell deformability, platelet aggregation and insulin action. Diabetes 32 (Suppl 2):88–91.Google Scholar
  24. 24.
    Jain S. K., and Levine S. N. 1990. Effect of diabetes on red blood cell membrane lipid peroxidation in rats. Clin. Res. 38:16A.Google Scholar
  25. 25.
    McCall A. C., Millington W. R., and Wurtman R. J. 1982. Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. Proc Natl Acad Sci USA 79, 5406–5410.PubMedGoogle Scholar
  26. 26.
    Jain S. K. 1989. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J. Biol. Chem. 264:21340–21345.PubMedGoogle Scholar
  27. 27.
    Jennings P. E., Jones A. F., Florkowski C. M., Lunec J., and Barnett A. H. 1987. Increased diene conjugates in diabetic subjects with microangiopathy. Diabet. Med 4:452–456.PubMedGoogle Scholar
  28. 28.
    Nishigaki I., Hagihara M., Tsunekawa H., Maseki M., and Yagi K. 1981. Lipid peroxide levels of serum lipoprotein fractions of diabetic patients. Biochem. Med. 25:373–378.PubMedGoogle Scholar
  29. 29.
    Bidlack W. R., and Tappel A. L. 1973. Damage to microsomal membrane by lipid peroxidation. Lipids 8:177–182.PubMedGoogle Scholar
  30. 30.
    Jain S. K. 1988. Evidence for membrane lipid peroxidation during in vivo aging of human erythrocytes. Biochim Biophys Acta. 937:205–210.PubMedGoogle Scholar
  31. 31.
    Pfafferott C., Meiselman H. J., and Hochstein P., 1982. The effect of malonyldialdehyde on erythrocyte deformability. Blood 59:12–15.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Arshag D. Mooradian
    • 1
    • 2
  • Frank Dickerson
    • 3
  • Thomas L. Smith
    • 4
  1. 1.The Medical Service, Department of MedicineUniversity of Arizona College of MedicineTucson
  2. 2.The Research Service, Department of MedicineUniversity of Arizona College of MedicineTucson
  3. 3.The Research Service Tucson VA Medical centerUniversity of Arizona College of MedicineTucson
  4. 4.The Research Service, Department of PharmacologyUniversity of Arizona College of MedicineTucson

Personalised recommendations