Neurochemical Research

, Volume 15, Issue 10, pp 963–967 | Cite as

Accumulation of galactosylsphingosine (psychosine) does not interfere with phosphorylation and methylation of myelin basic protein in the twitcher mouse

  • Takeo Yoshimura
  • Takuro Kobayashi
  • Nobue Shinnoh
  • Ikuo Goto
Original Articles


In attempts to elucidate mechanisms of demyelination in the twitcher mouse (Twi), phosphorylation and methylation of myelin basic protein (MBP) were examined in the brainstem and spinal cord of this species. Phosphorylation of MBP in isolated myelin by an endogenous kinase and an exogenous [32P]ATP was not impaired and protein kinase C activity in the brain cytosol was not reduced. When the methylation of an arginine residue of MBP was examined in slices of the brainstem and spinal cord, using [3H]methionine as a donor of the methyl groups, no difference was found between Twi and the controls. Radioactivity of the [3H] methionine residue of MBP of Twi was also similar to that of the controls. Thus, accumulation of psychosine in Twi does not interfere with the activity of endogenous kinase, methylation of MBP, and the synthesis and transport of MBP into myelin membrane.

Key Words

Twitcher mouse myelin basic protein psychosine phosphorylation methylation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Suzuki, K., and Suzuki, Y. 1983. Galactosylceramide lipidosis: globoid cell leukodystrophy (Krabbe's disease). Pages 857–880,in Stanbury, J. B., Wyngaarden, J. B., Fredrickson, D. S., Goldstein, J. L., and Brown, M. S. (eds.), The Metabolic Basis of-Inherited Disease. McGraw-Hill, New York.Google Scholar
  2. 2.
    Kobayashi, T., Shinnoh, N., Goto, I., and Kuroiwa, Y. 1985. Hydrolysis of galactosylceramide is catalyzed by two genetically distinct acid β-galactosidases. J. Biol. Chem. 260:14982–14987.PubMedGoogle Scholar
  3. 3.
    Miyatake, T., and Suzuki, K. 1972. Globoidcell leukodystdrophy: additional deficiency of psychosine galactosidase. Biochem. Biophys. Res. Commun. 48:538–543.Google Scholar
  4. 4.
    Igisu, H., and Suzuki, K. 1984. Progressive accumulation of toxic metabolite in a genetic leukodystrophy. Science 224:753–755.PubMedGoogle Scholar
  5. 5.
    Shinoda, H., Kobayashi, T., Katayama, M., Goto, I., and Nagara, H. 1987. Accumulation of galactosylsphingosine (psychosine) in the twitcher mouse: determination by HPLC. J. Neurochem. 49:92–99.PubMedGoogle Scholar
  6. 6.
    Kobayashi, T., Shinoda, H., Goto, I., Yamanaka, T., and Suzuki, Y. 1987. Globoid cell leukodystrophy is a generalized galactosylsphingosine (psychosine) storage disease. Biochem. Biophys. Res. Comm. 144:41–46.PubMedGoogle Scholar
  7. 7.
    Svennerholm, L., Vanier, M.-T., and Mansson, J.-E. 1980. Krabbe disease. A galactosylsphingosine (psychosine) lipidosis. J. Lipid Res. 21:53–64.PubMedGoogle Scholar
  8. 8.
    Kobayashi, T., Goto, I., Yamanaka, T., Suzuki, Y., Nakano, T., and Suzuki, K. 1988. Infantile and fetal globoid cell leukodystsrophy: analysis of galactosylceramide and galactosylsphingosine. Ann. Neurol. 24:517–522.PubMedGoogle Scholar
  9. 9.
    Yoshimura, T., Kobayashi, T., Mitsuo, K., and Goto, I. 1989. Decreased fatty acylation of myelin proteolipid protein in the twitcher mouse. J. Neurochem. 52:836–841.PubMedGoogle Scholar
  10. 10.
    Miyamoto, K., and Kakiuchi, S. 1974. In vitro and in vivo phosphorylation of myelin basic protein by endogenous and exogenous adenosidne 3′:5′-monophosphate dependent protein kinase in brain. J. Biol. Chem. 249:2769–2777.PubMedGoogle Scholar
  11. 11.
    Steck, A. J., and Appel, S. H. 1974. Phosphorylation of myelin basic protein. J. Biol. Chem. 249:5416–5420.PubMedGoogle Scholar
  12. 12.
    Baldwin, G. S., and Carnegie, P. R. 1971. Specific enzyme methylation of an arginine residue in the experimental allergic encephalomyelitis protein from human myelin. Science 171:579–581.PubMedGoogle Scholar
  13. 13.
    Folch-Pi, J., and Stoffyn, P. J. 1972. Proteolipids from membrane system. Ann. NY Acad. Sci. 195:86–107.PubMedGoogle Scholar
  14. 14.
    Agrawal, H. C., Randle, C. L., and Agrawal, D. 1982. In vivo acylation of rat brain myelin protelipid protein. J. Biol. Chem. 257:4588–4592.PubMedGoogle Scholar
  15. 15.
    Hannun, Y. A., and Bell, R. M. 1987. Lysosphingolipids inhibit protein kinase C:implications for the sphingolipidoses. Science 235:670–674.PubMedGoogle Scholar
  16. 16.
    Igisu, H., and Nakamura, M. 1986. Inhibitin of cytochrome c oxidase by psychosine (galactosylsphingosine). Biochem. Biophys. Res. Commun. 137:323–327.PubMedGoogle Scholar
  17. 17.
    Strasberg, P. 1986. Cerebroside and psychosine distrupt mitochondrial functions. Biochem. Cell Biol. 64:485–489.PubMedGoogle Scholar
  18. 18.
    Kobayashi, T., Nagara, H., Suzuki, K., and Suzuki, K. 1982. The twitcher mouse: determination of gentic status by galactosylceramidase assays on clipped tail. Biochem. Med. 27:8–14.PubMedGoogle Scholar
  19. 19.
    Agrawal, H. C., Burton, R. M., Fishman, M. A., Mitchell, R. F., and Prensky, A. L. 1972. Partial characterization of a new myelin component. J. Neurochem. 19:2083–2089.PubMedGoogle Scholar
  20. 20.
    Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.PubMedGoogle Scholar
  21. 21.
    Agrawal, H. C., Agrawal, D., Yoshimura, T., and Benjamins, J. 1987. In vitro acylation of myelin PLP and DM-20 in the quaking mouse brain. Neurochem. Res. 12:783–786.PubMedGoogle Scholar
  22. 22.
    Townsend, L. E., Agrawal, D., Benjamins, J. A., and Agrawal, H. C. 1982. In vitro acylation of rat brain proteolipid protein. J. Biol. Chem. 257:9745–9750.PubMedGoogle Scholar
  23. 23.
    Agrawal, H. C., Randle, C. L., and Agrawal, D. 1981. In vivo phosphorylation of two myelin basic proteins of developing rabbit brain. J. Biol. Chem. 256:12243–12246.PubMedGoogle Scholar
  24. 24.
    Kakimoto, Y., and Akazawa, S. 1970. Isolation and identification of NG,NG-and NG,N′G-dimethylarginine, Ne-mono-, di-, and trimethyllysine, and glucosyl-galactosyl- and galactosyl-δ-hydroxylysine from human urine. J. Biol. Chem. 245:5751–5758.PubMedGoogle Scholar
  25. 25.
    Nakajima, T., Matsuoka, Y., and Kokimoto, Y. 1971. Isolation and identification of NG-monomethyl-, NG,NG-dimethyl- and NG,N′G-dimethylarginine from the hydrosate of proteins of bovine brain. Biochim. Biophys. Acta 230:212–222.PubMedGoogle Scholar
  26. 26.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  27. 27.
    Brostoff, S., and Eyler, E. H. 1971. Localization of methylated arginine in Al protein from myelin. Proc. Natl. Acad. Sci. USA 68:765–769.PubMedGoogle Scholar
  28. 28.
    Nagara, H., Kobayashi, T., Suzuki, K., and Suzuki, K. 1982. The twitcher mouse: normal pattern of early myelinatation in the spinal cord. Brain Res. 244:289–294.PubMedGoogle Scholar
  29. 29.
    Takahashi, H., and Suzuki, K. 1984. Demyelination in the spinal cord of murine globoid cell leukodystrophy (the twitcher mouse). Acta Neuropathol. (Berl.) 62:298–308.Google Scholar
  30. 30.
    Murray, N., and Steck, A.J. 1984. Impulse conduction regulates myelin basic protein phosphorylation in rat optic nerve. J. Neurochem. 43:243–248.PubMedGoogle Scholar
  31. 31.
    Stoner, G. L. 1983. Proposed role for phosporylation in the folding of myelin basic protein. Trans. Am. Soc. Neurochem. 14: 164 (Abstr).Google Scholar
  32. 32.
    DesJardins, K. C., and Morell, P. 1983. Phosphate groups modifying myelin basic proteins are metabolically labile; methyl groups are stable. J. Cell Biol. 97:438–446.PubMedGoogle Scholar
  33. 33.
    Miyamoto, E. 1975. Protein kinases in myelin of rat brain: solubilization and characterization. J. Neurochem. 24:503–512.PubMedGoogle Scholar
  34. 34.
    Miyamoto, E. 1976: Phosphorylation of endogenous proteins in myelin of rat brain. J. Neurochem. 26:573–577.PubMedGoogle Scholar
  35. 35.
    Endo, T., and Hidaka, H. 1980. Ca2+-calmodulin dependent phosphorylation of myelin isolated from rabbit brain. Biochem. Biophys. Res. Commun. 97:553–558.PubMedGoogle Scholar
  36. 36.
    Turner, R. S., Jen Chou, C. H., Kibler, R. F., and Kuo, J. F. 1982. Basic protein in brain myelin is phosphorylated by endogenous phosphlipid-sensitive Ca2+-dependent protein kinase. J. Neurochem. 39:1397–1404.PubMedGoogle Scholar
  37. 37.
    Murray, N., and Steck, A. J. 1986. Activation of myelin kinase by diacylglycerol and 4 β-phorbol 12-myristate 13-acetate. J. Neurochem. 46:1655–1657.PubMedGoogle Scholar
  38. 38.
    Sulakhe, P. V., Petrali, E. H., Davis, E. R., and Thiessen, B. J. 1980. Calcium ion stimulated protein kinase catalyzed phosphorylation of basic protein in myelin subfractions and myelin-like membrane fraction from rat brain. Biochemistry 19:5363–5371.PubMedGoogle Scholar
  39. 39.
    Carnegie, P. R., Dunkley, P. R., Kemp, B. E., and Murray, A. W. 1974. Phosphorylation of selected serine and threonine residues in myelin basic protein by endogenous and exogenous protein kinases. Nature 249:147–150.PubMedGoogle Scholar
  40. 40.
    Ulmer, J. B., and Braun, P. E. 1987. Chloroform markedly stimulates the phosphorylation of myelin proteins. Biochem. Biophys. Res. Commun. 146:1084–1088.PubMedGoogle Scholar
  41. 41.
    Norton, W. T., and Cammer, W. 1984. Isolation and characterization of myelin. Pages 147–195,in Morell, P. (ed.), Myelin, Plenum Press, New York.Google Scholar
  42. 42.
    Vartanian, T., Dawson, G., Soliven, B., Nelson, D. J., and Szuchet, S. 1989. Phosphorylation of myelin basic protein in intact oligodendrocytes: Inhibition by galactosylsphingosine and cyclic AMP. Glia 2:370–379.PubMedGoogle Scholar
  43. 43.
    Weir, D. G., Keating, S., Molloy, A., McPartlin, J., Kennedy, S., Blanchflower, J., Kennedy, D. G., Rice, D., and Scott, J. M. 1988. Methylation deficiency causes vitamin-B12-associated neuropathy in the pig. J. Neurochem 51:1949–1952.PubMedGoogle Scholar
  44. 44.
    Jones, G. M., and Carnegie, P. R. 1974. Methylation of myelin basic protein by enzymes from rat brain. J. Neurochem. 23:1231–1237.PubMedGoogle Scholar
  45. 45.
    Long, M., Weir, D., and Scott, J. 1989. Source of methyl groups in brain and nerve tissue in the rat. J. Neurochem. 52:377–380.PubMedGoogle Scholar
  46. 46.
    Hirata, F., and Axelrod, J. 1980. Phospholipid methylation and biological signal transmission. Science 209:1082–1090.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Takeo Yoshimura
    • 1
  • Takuro Kobayashi
    • 1
  • Nobue Shinnoh
    • 1
  • Ikuo Goto
    • 1
  1. 1.Department of Neurology, Neurological Institute, Faculty of MedicineKyushu UniversityFukuokaJapan

Personalised recommendations