Advertisement

Neurochemical Research

, Volume 15, Issue 10, pp 949–956 | Cite as

Rat brain monoamine and serotonin S2 receptor changes during pregnancy

  • Jonathan Glaser
  • Vivienne Ann Russell
  • Anna Susanna de Villiers
  • Johanna Anita Searson
  • Joshua Joachim Fransua Taljaard
Original Articles

Abstract

The concentrations of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites were determined in 5 brain areas of non-pregnant, 15 and 20 day pregnant and 4 day post-partum rats. Striatal 5-HT content was significantly lower in 15 and 20 day pregnant rats than in estrous controls. A significant decrease in striatal and frontal cortex 5-hydroxyindole-3-acetic acid (5-HIAA) concentration was observed in 15 day pregnant rats. Significant increases in hypothalamic and hippocampal NA levels were observed at 4 days post-partum. Frontal cortex serotonin S2 receptorKd was reduced in 4 day post-partum rats. There was no significant change in S2 receptorBmax during pregnancy. Levels of progesterone were negatively correlated with striatal DA, homovanillic acid (HVA), 5-HT, and 5-HIAA levels, hypothalamic DA, hippocampal 5-HT, and frontal cortex 5-HIAA values as well as striatal HVA to DA, and HVA to 3,4-dihydroxyphenylacetic acid (DOPAC) ratios and amygdaloid HVA to DOPAC ratios. The limbic neurotransmitter changes might possibly contribute to mood changes which occur during pregnancy and post-partum.

Key Words

Dopamine noradrenaline serotonin S2 receptors progesterone estradiol-17β corticosterone limbic system pregnancy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maggi, A., and Perez, J. 1985. Role of female gonadal hormones in the CNS: clinical and experimental aspects. Life Sci. 37:893–906.PubMedGoogle Scholar
  2. 2.
    Biegon, A., Fischette, C. T., Rainbow, T. C. and McEwen, B. S. 1982. Serotonin receptor modulation by estrogen in discrete brain nuclei. Neuroendocrinology. 35:287–291.PubMedGoogle Scholar
  3. 3.
    Biegon, A., and McEwen, B. S. 1982. Modulation by estradiol of serotonin 1 receptors in brain. J. Neurosci. 2:199–205.PubMedGoogle Scholar
  4. 4.
    Biegon, A., Reches, A., Snyder, L., and McEwen, B. S. 1983. Serotonergic and noradrenergic receptors in the rat brain: modulation by chronic exposure to ovarian hormones. Life Sci. 32:2015–2021.PubMedGoogle Scholar
  5. 5.
    Cardinali, D. P., and Gómez, E. 1977. Changes in hypothalamic noradrenaline, dopamine and serotonin uptake after oestradiol administration to rats. J. Endocrinol. 73:181–182.PubMedGoogle Scholar
  6. 6.
    Cramer, O. M., Parker, C. R., Jr., and Porter, J. C, 1979. Estrogen inhibition of dopamine release into hypophysial portal blood. Endocrinology. 104:419–422.PubMedGoogle Scholar
  7. 7.
    Crowley, W. R. 1982. Effects of ovarian hormones on norepinephrine and dopamine turnover in individual hypothalamic and extrahypothalamic nuclei. Neuroendocrinology. 34:381–386.PubMedGoogle Scholar
  8. 8.
    Ahrén, K., Fuxe, K., Hamberger, L., and Hökfelt, T. 1971. Turnover changes in the tubero-infundibular dopamine neurons during the ovarian cycle of the rat. Endocrinology. 88:1415–1424.PubMedGoogle Scholar
  9. 9.
    Carr, L. A., and Voogt, J. L. 1980. Catecholamine synthesizing enzymes in the hypothalamus during the estrous cycle. Brain Research. 196:437–445.PubMedGoogle Scholar
  10. 10.
    Findder, J. M., and Tonge, S. R. 1975. Variations in the concentrations of monoamines and their metabolites in eight regions of rat brain during the estrous cycle: a basis for interactions between hormones and psychotrophic drugs. J. Pharm. Pharmacol. 27:39P.Google Scholar
  11. 11.
    Luine, V. N., Khylchevskaya, R. I., and McEwen, B. S. 1975. Effect of gonadal steroids on activities of monoamine oxidase and choline acetylase in rat brain. Brain Research. 86:293–306.PubMedGoogle Scholar
  12. 12.
    Luine, V. N., and Rhodes, J. C. 1983. Gonadal hormone regulation of MAO and other enzymes in hypothalamic areas. Neuroendocrinology. 36:235–241.PubMedGoogle Scholar
  13. 13.
    McEwen, B. S. 1987. Glucocorticoid-biogenic amine interactions in relation to mood and behavior. Biochem. Pharmacol. 36:1755–1763.PubMedGoogle Scholar
  14. 14.
    Desan, P. H., Woodmansee, W. W., Ryan, S. M., Smock, T. K., and Maier, S. F. 1988. Monoamine neurotransmitters and metabolites during the estrous cycle, pregnancy, and the postpartum period. Pharmacol. Biochem. Behav. 30:563–568.PubMedGoogle Scholar
  15. 15.
    Wirz-Justice, A. 1987. Circadian rhythms in mammalian neurotransmitter receptors. Prog. Neurobiol. 29:219–259.PubMedGoogle Scholar
  16. 16.
    Russell, V. A., Lamm, M. C. L., De Villiers, A. S., Taljaard, J. J. F., and Chalton, D. O. 1985. Effects of combined administration of L-tryptophan and tricyclic antidepressants on α2- and β-adrenoceptors and monoamine levels in rat brain. Neurochem. Res. 10:1661–1671.PubMedGoogle Scholar
  17. 17.
    Allin, R., Russell, V. A., Lamm, M. C. L., and Taljaard, J. J. F. 1988. Regional distribution of monoamines in the nucleus accumbens of the rat. Neurochem. Res. 13:937–942.PubMedGoogle Scholar
  18. 18.
    Leysen, J. E., Niemegeers, C. J. E., Van Neuten, J. M., and Laduron, P. M. 1982. [3H]Ketanscrin (R41 468), a selective3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol. Pharmacol. 21:301–314.PubMedGoogle Scholar
  19. 19.
    Miller, G. L. 1959. Protein determination for large numbers of samples. Anal. Chem. 31:964.Google Scholar
  20. 20.
    Scatchard, G. 1949. The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51:660–672.Google Scholar
  21. 21.
    Munson, P. J., and Rodbard, D. 1980. LIGAND: A versatile computerized approach for characterization of ligand binding systems. Anal. Biochem. 107:220–239.PubMedGoogle Scholar
  22. 22.
    Al-Dujaili, E. A. S., and Edwards, C. R. W. 1978. The development and application of a direct radioimmunoassay for plasma aldosterone using125I-labeled ligand-comparison of three methods. J. Clin. Endocrinol. Metab. 46:105–113.PubMedGoogle Scholar
  23. 23.
    Al-Dujaili, E. A. S., Williams, B. C., and Edwards, C. R. W. 1981. The development and application of a direct radioimmunoassay for corticosterone. Steroids. 37:157–176.PubMedGoogle Scholar
  24. 24.
    Ochiai, K., Terashima, Y., Hachiya, S-I, and Maruyama, M. 1986. Effects of sexual steroid hormones treatment on Ca2+ sensitivity of chemically skinned uterine muscle fibres from ovariectomized rats. Jpn. J. Physiol. 36:1275–1279.PubMedGoogle Scholar
  25. 25.
    Orpen, B. G., Furman, N., Wong, P. Y., and Fleming, A. S. 1987. Hormonal influences on the duration of postpartum maternal responsiveness in the rat. Physiol. Behav. 40:307–315.PubMedGoogle Scholar
  26. 26.
    Pepe, G. J., and Rothchild, I. 1974. A comparative study of serum progesterone levels in pregnancy and in various types of pseudopregnancy in the rat. Endocrinology. 95:275–279.PubMedGoogle Scholar
  27. 27.
    Shaikh, A. A. 1971. Estrone and estradiol levels in the ovarian venous blood from rats during the estrous cycle and pregnancy. Biol. Reprod. 5:297–307.PubMedGoogle Scholar
  28. 28.
    Smolen, A., Smolen, T. N., and Van de Kamp, J. L. 1987. Alterations in brain catecholamines during pregnancy. Pharmacol. Biochem. Behav. 26:613–618.PubMedGoogle Scholar
  29. 29.
    Zuspan, F. P., Nelson, G. H., Ahlquist, R. P., and Williams, S. 1967. Alterations of urinary epinephrine and norepinephrine. The antepartum, intrapartum, and postpartum periods. Am. J. Obs. Gyne. 99:709–721.Google Scholar
  30. 30.
    Van Praag, H. M. 1982. Neurotransmitters and CNS disease. Depression. Lancet II (8310):1259–1264.Google Scholar
  31. 31.
    Peabody, C. A., Faull, K. F., King, R. J., Whiteford, H. A., Barchas, J. D., and Berger, P. A. 1986. CSF amine metabolites and depression. Psychiat. Res. 21:1–7.Google Scholar
  32. 32.
    Kendal, D. A., Stancel, G. M., and Enna, S. J. 1981. Imipramine: Effect of ovarian steroids on modifications in serotonin receptor binding. Science. 211:1183–1185.PubMedGoogle Scholar
  33. 33.
    Ramirez, O. A., and Carrer, H. F. 1982. Effects of estrogen and progesterone priming on the uptake and release of serotonin and noradrenaline from the ventromedial hypothalamus. Acta physiol. latinoam. 32:313–319.Google Scholar
  34. 34.
    Breuer, H., and Köster, G. 1974. Interaction between oestrogens and neurotransmitters at the hypophysial-hypothalamic level. J. Steroid Biochem. 5:961–967.Google Scholar
  35. 35.
    Holzbauer, M., and Youdim, M. B. H. 1973. The oestrous cycle and monoamine oxidase activity. Br. J. Pharmacol. 48:600–608.PubMedGoogle Scholar
  36. 36.
    Paul, S. M., Axelrod, J., Saavedra, J. M., and Skolnick, P. 1979. Estrogen-induced efflux of endogenous catecholamines from the hypothalamus in vitro. Brain Research. 178:499–505.PubMedGoogle Scholar
  37. 37.
    Löfström, A., and Bäckström, T. 1978. Relationship between plasma estradiol and brain catecholamine content in the diestrous female rat. Psychoneuroendocrinology. 3:103–107.PubMedGoogle Scholar
  38. 38.
    Greengrass, P. M., and Tonge, S. R. 1974. Further studies on monoamine metabolism in three regions of mouse brain during pregnancy: monoamine metabolite concentrations and the effects of injected hormones. Arch. int. Pharmacodyn. 212:48–59.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Jonathan Glaser
    • 1
  • Vivienne Ann Russell
    • 1
  • Anna Susanna de Villiers
    • 1
  • Johanna Anita Searson
    • 1
  • Joshua Joachim Fransua Taljaard
    • 1
  1. 1.MRC Research Unit for the Neurochemistry of Mental Diseases, Department of Chemical PathologyUniversity of Stellenbosch, Tygerberg HospitalTygerberg(R.S.A.)

Personalised recommendations