Skip to main content
Log in

GABA synthesis in brain slices is dependent on glutamine produced in astrocytes

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The rate of γ-aminobutyric acid (GABA) synthesis in rat-brain slices was determined by inhibiting GABA transaminase with 20-μM gabaculine and measuring the increase of GABA. Added 500-μM glutamine increased the rate of GABA synthesis by 50%, indicating that glutamate decarboxylase is not saturated in brain slices. The stimulation of GABA synthesis with added glutamine in brain slices was much less than that reported for synaptosomes. The lower stimulation in slices was attributable to astrocytic glutamine production, as the rate of GABA synthesis decreased by 44% when glutamine production was inhibited with methionine sulfoximine. Added glutamine restored the rate to the maximal value observed in brain slices. The rate of GABA synthesis was decreased by 65% in slices pretreated with an inhibitor of glutaminase, and added glutamine did not reverse this effect. These results suggest that glutamine produced by astrocytes is a quantitatively important precursor of GABA synthesis in cortical slices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Krnjevic, K. 1970. Glutamate and γ-aminobutyric acid in brain. Nature 228:119–124.

    Google Scholar 

  2. McCormick, D. A. 1989. GABA as an inhibitory neurotransmitter in human cerebral cortex. J. Neurophysiol. 62:1018–1027.

    Google Scholar 

  3. Martin, D. L. 1987. Regulatory properties of brain glutamate decarboxylase. Cell. Mol. Neurobiol. 7:237–253.

    Google Scholar 

  4. Battaglioli, G., and Martin, D. L. 1990. Stimulation of synaptosomal γ-aminobutyric acid synthesis by glutamate and glutamine. J. Neurochem. 54:1179–1187.

    Google Scholar 

  5. Shank, R. P., and Aprison, M. H. 1977. Glutamine uptake and metabolism by the isolated toad brain: Evidence pertaining to its proposed role as a transmitter precursor. J. Neurochem. 28:1189–1196.

    Google Scholar 

  6. Reubi, J. C., Van Den Berg, C. and Cuenod, M. 1978. Glutamine as precursor for the GABA and glutamate transmitter pools. Neurosci. Letts. 10:171–174.

    Google Scholar 

  7. Paulsen, R. E., Odden, E., and Fonnum, F. 1988. Importance of glutamine for γ-aminobutyric acid synthesis in rat neostriatum in vivo. J. Neurochem. 51:1294–1299.

    Google Scholar 

  8. Shank, R. P., and Aprison, M. H., 1981. Present status and significance of the glutamine cycle in neural tissues. Life Sci. 28:837–842.

    Google Scholar 

  9. Hertz, L., Kvamme, E., McGeer, E. G., and Schousboe, A. 1983. Glutamine, glutamate and GABA in the central nervous system. Alan R. Liss, New York. pp. 705.

    Google Scholar 

  10. Berl, S., Lajtha, A., and Waelsch, H. 1961. Amino acid and protein metabolism-VI Cerebral compartments of glutamic acid metabolism. J. Neurochem. 7:186–197.

    Google Scholar 

  11. Waelsch, H. 1962. In vivo compartments of glutamic acid metabolism in brain and liver. In: Amino acid pools: Distribution formation and function of free amino acids (J. T. Holden, ed.) pp. 722–730. Elsevier, Amsterdam.

    Google Scholar 

  12. van den Berg, C. J., and Garfinkel D. 1971 A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem. J. 123:211–218.

    Google Scholar 

  13. Balazs, R., Patel, A. J., and Richter, D. 1972. Metabolic compartments in the brain: Their properties and relation to morphological structures. In: Metabolic compartmentation in the brain (R. Balazs and J. E. Cremer, eds.) pp. 167–184, MacMillan, London.

    Google Scholar 

  14. Salganicoff, L., and DeRobertis, E. 1965. Subcellular distribution of the enzymes of the glutamic acid, glutamine, and γ-aminobutyric acid cycles in rat brain. J. Neurochem. 12:287–309.

    Google Scholar 

  15. Fonnum, F., Storm-Mathisen J., and Walberg, F. 1970. Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat. Brain Res. 20:259–275.

    Google Scholar 

  16. Saito, K., Barber, R., Wu, J.-Y., Matsuda, T., Roberts, E., and Vaughn, J. E. 1974. Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc. Natl. Acad. Sci. USA 71:269–273.

    Google Scholar 

  17. Storm-Mathisen, J., Leknes, A. K., Bore, A. T., Vaalund, J. L., Edminson, P., Haug, F.-M. S., and Ottersen, O. P. 1983. First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520.

    Google Scholar 

  18. Martinez-Hernandez, A. M., Bell, K. P., and Norenberg, M. D., 1977. Glutamine synthetase: glial localization in brain. Science 195:1356–1358.

    Google Scholar 

  19. Lasher, R. S. 1974. The uptake of [3H]GABA and differentiation of stellate neurons in cultures of dissociated postnatal rat cerebellum. Brain Res. 69:235–254.

    Google Scholar 

  20. McLennan, H. 1976. The autoradiographic localization of L-[3H]glutamate in rat brain tissue. Brain Res. 115:139–144.

    Google Scholar 

  21. Hertz, L. 1979. Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid neurotransmitters. Prog. Neurobiol 13:277–323.

    Google Scholar 

  22. Tapia, R. 1983. γ-Aminobutyrio acid. Metabolism and biochemistry of synaptic transmission. Pages 423–466,in: A. Lajtha, (ed.) Handbook of Neurochemistry, Vol. 3, Plenum Press, New York.

    Google Scholar 

  23. Norenberg, M. D., and Martinez-Hernandez, A. 1979. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161:303–310.

    Google Scholar 

  24. Cammer, W. 1990. Glutamine synthetase in the central nervous system is not confined to astrocytes. J. Neuroimmunol. 26:173–178.

    Google Scholar 

  25. Patel, A. J., Weir, M. D., Hunt, A., Tahourdin, C. S., and Thomas, D. G. 1985. Distribution of glutamine synthetase and glial fibrillary acidic protein and correlation of glutamine synthetase with glutamate decarboxylase in different regions of the rat central nervous system. Brain Res. 331:1–9.

    Google Scholar 

  26. Ward, H. K., and Bradford, H. F. 1979. Relative activities of glutamine synthetase and glutaminase in mammalian synaptosomes. J. Neurochem. 33:339–342.

    Google Scholar 

  27. Schousboe, A., Hertz, L., Svenneby, G., and Kvamme E. 1979. Phosphate activated gluatminase and glutamine uptake in primary cultures of astrocytes. J. Neurochem. 32:943–950.

    Google Scholar 

  28. Waniewski, R. A., and Martin, D. L., 1986. Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures. J. Neurochem. 47:304–313.

    Google Scholar 

  29. Kvamme, E., and Olsen, B. E. 1980. Substrate mediated regulation of phosphate-activated glutaminase in nervous tissue. Brain Res. 181:228–233.

    Google Scholar 

  30. Griffith, O. W., and Meister, A. 1978. Differential inhibition of glutamine and γ-glutamylcysteine synthetases by α-alkyl analogs of methionine sulfoximine thal induce convulsions. J. Biol. Chem. 253:2333–2338.

    Google Scholar 

  31. Rothstein, J. D., and Tabakoff, B. 1984. Alteration of striatal glutamate release after glutamine synthetase inhibition. J. Neurochem. 43:1438–1446.

    Google Scholar 

  32. Matsui, Y., and Deguchi, T. 1977. Effects of gabaculine, a new potent inhibitor of γ-aminobutyrate transaminase on the brain γ-aminobutyrate content and convulsions in mice. Life Sci. 20:1291–1296.

    Google Scholar 

  33. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  34. Kvamme, E., Torgner, I. A., and Svenneby, G. 1985. Glutaminase from mammalian tissues. Pages 241–245,in A. Meister, (ed.) Methods in enzymology, Vol. 113 Academic Press, New York.

    Google Scholar 

  35. Pishak, M. R., and Phillips, A. T. 1979. A modified radioisotopic assay for measuring glutamine synthetase activity in tissue extracts. Analyt. Biochem. 94:82–88.

    Google Scholar 

  36. Waniewski, R. A., and McFarland, D. 1990. Intrahippocampal kainic acid reduces glutamine synthetase. Neurosci. 34:305–310.

    Google Scholar 

  37. Hagenfeldt, L., Bjerkenstedt, L., Edman, G., Sedvall, G., and Wiesel, F.-A. 1984. Amino acids in plasma and CSF and monamine metabolites in CSF: Interrelationship in healthy subjects. J. Neurochem. 42:833–837.

    Google Scholar 

  38. Spink, D. C., Swann, J. W., Snead, O. C., Waniewski, R. A., and Martin, D. L. 1986. Analysis of aspartate and glutamate in human cerebrospinal fluid by high-performance liquid chromatography with automated precolumn derivatization. Analyt. Biochem. 158:79–86.

    Google Scholar 

  39. Shapiro, R. A., Clark, V. M., and Curthoys, N. P. 1979. Inactivation of rat renal phosphate-dependent glutaminase with 6-diazo-5-oxo-L-norleucine. J. Biol. Chem. 254:2835–2838.

    Google Scholar 

  40. Nicklas, W. J. 1983. Relative contributions of neurons and glia to metabolism of glutamate and GABA. Pages 219–231,in L. Hertz, E. Kvamme, E. G. McGeer and A. Schousboe, (eds.) Glutamate, glutamine and GABA in the central nervous system, Alan R. Liss, New York.

    Google Scholar 

  41. Szerb, J. C., and O'Regan, P. A. 1984. Glutamine enhances glutamate release in preference to γ-aminobutyrate release in hippocampal slices. Can. J. Physiol. Pharmacol. 62:919–923.

    Google Scholar 

  42. Szerb, J. C. 1988. Rate-limiting steps in the synthesis of GABA and glutamate. Neurotransmitters and cortical function. Pages 153–166,in M. Avoli, T. A. Reader, R. W. Dykes, and P. Gloor, (eds.) Plenum Publishing Corp. New York.

    Google Scholar 

  43. Fonnum, F., and Walberg, F. 1973. The concentration of GABA within inhibitory nerve terminals. Brain Res. 62:577–579.

    Google Scholar 

  44. Fonnum, F., and Walberg, F. 1973. An estimation of the concentration of γ-aminobutyric acid and glutamate decarboxylase in the Purkinje axon terminals in the cat. Brain Res. 54:115–127.

    Google Scholar 

  45. Ottersen, O. P., and Storm-Mathisen, J. 1984. Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J. Comp. Neurol. 229:374–392.

    Google Scholar 

  46. Storm-Mathisen, J., and Ottersen, O. P. 1986. Antibodies against amino acid neurotransmitters. Pages 107–136,in (P. Panula, H. Paivarinta and S. Soinila, (eds.)), Neurohistochemistry: modern methods and applications. Alan R. Liss, New York.

    Google Scholar 

  47. Patel, A. J., Johnson, A. L., and Balazs, R. 1974. Metabolic compartmentation of glutamate associated with the formation of γ-aminobutyrate. J. Neurochem. 23:1271–1279.

    Google Scholar 

  48. Szerb, J. C., and O'Regan, P. A. 1986. Possible reasons for the failure of glutamine to influence GABA release in rat hippocampal slices; effect of nipecotic acid and methionine sulfoximine. Neurochem. Intl. 8:389–395.

    Google Scholar 

  49. Lamar, C. 1968. The duration of the inhibition of glutamine synthetase by methionine sulfoximine. Biochem. Pharmacol. 17:636–640.

    Google Scholar 

  50. Weil-Malherbe, H. 1969. Activators and inhibitors of brain glutaminase. J. Neurochem. 16:855–864.

    Google Scholar 

  51. DeRobertis, E., Sellinger, O. Z., Rodriguez De Lores Arnaiz, G., Alberici, M., and Zieher, L. M. 1967. Nerve endings in methionine sulfoximine convulsant rats, a neurochemical and ultrastructural study. J. Neurochem. 14:81–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battaglioli, G., Martin, D.L. GABA synthesis in brain slices is dependent on glutamine produced in astrocytes. Neurochem Res 16, 151–156 (1991). https://doi.org/10.1007/BF00965703

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965703

Key Words

Navigation