Neurochemical Research

, Volume 16, Issue 2, pp 123–128 | Cite as

The phylogenic expression of plasmolipin in the vertebrate nervous system

  • Victor S. Sapirstein
  • Charles E. Nolan
  • Itzhak Fischer
  • Elizabeth Cochary
  • Susana Blau
  • Cheryl J. Flynn
Original Articles


Plasmolipin is a plasma membrane proteolipid is a major myelin membrane component (Cochary et al., 1990). In this study we report the phylogenic expression of plasmolipin in the vertebrate nervous system. Using Western blot analysis with polyclonal antibodies, we have analyzed membrane fractions, including myelin, from elasmobranchs, teleosts, amphibians, reptiles, birds and mammals. On the basis of immune detection, plasmolipin appears to be restricted to the mammalian nervous system. Comparison of the central and peripheral nervous systems of mammals showed only minor differences in the level of plasmolipin in these two regions. Within mammals, little quantitative differences were observed when rat, human and bovine membrane fractions were compared. The late evolutionary expression of plasmolipin which results in its restriction to mammals makes it unique among the (major) myelin proteins. The potential physiologic significance of these data are discussed.

Key Words

Plasma membrane proteolipid myelin evolution mammalian brain 



Ethylene diamine N.,N′N′ tetracetic acid


Ethylene glycol bis-(B-Aminoethyl Ether) N,,N′N′ tetracetic acid


([N-Morpholino] ethane sulfonic acid) DCCD, N′, Dicyclohexyl carbodiimide


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Franz, T., Waehneldt, T. V., Neuhoff, V., and Wachtler, K. 1981. Central nervous system myelin proteins and glycoproteins in vertebrates: a phylogenetic study. Brain Res. 226:245–258.Google Scholar
  2. 2.
    Saavedra, R. A., Fors, L., Aebersold, R. H., Arden, B., Horvath, S., Sanders, J., and Hood, L. 1989. The myelin proteins of the shark brain are similar to the myelin proteins of the mammalian peripheral nervous system. J. Mol. Evol. 29 (2):149–156.Google Scholar
  3. 3.
    Tai, F. L., Smith, Ross, Bernard, C. C. A., and Hearn, M. W. T. 1986. Evolutionary divergence in the structure of myelin basic protein: comparison of chondrichthye basic proteins with those from higher vertebrates. J. Neurochem. 46 (4):1050–1057.Google Scholar
  4. 4.
    Waehneldt, T. V., Matthieu, J. M., Malotka, J., and Joss, J. 1987. A glycosylated proteolipid protein is common to CNS myelin of recent lungfish (ceratodidae, lepidosirenidae). Comp. Biochem. Physiol. 88 (4):1209–1212.Google Scholar
  5. 5.
    Waehneldt, T. V., Malotka, J., Karin, N. J., and Matthieu, J. M. 1985. Phylogenetic examination of vertebrate central nervous system myelin proteins by electro-immunoblotting. Neurosci. Lett. 57:97–102.Google Scholar
  6. 6.
    Wachneldt, T. V., Stoklas, S., Jeserich, G., and Matthieu, J. 1986. Central nervous system myelin of teleosts: comparative electrophoretic analysis of its proteins by staining and immunoblotting. Comp. Biochem. Physiol. 84:273–278.Google Scholar
  7. 7.
    Waehneldt, T. V., Matthieu, J. M., and Jeserich, G. 1986. Major central nervous system myclin glycoprotein of the african lungfish (Protopterus dolloi) cross-reacts with myelin proteolipid protein antibodies, indicating a close phylogenetic relationship with amphibians. J. Neurochem. 46:1387–1391.Google Scholar
  8. 8.
    Linington, C., and Waehneldt, T. V. 1990. Conservation of the carboxyl terminal epitope of myelin proteolipid protein in the tetrapods and lobe-finned fish. J. Neurochem. 54:1354–1359.Google Scholar
  9. 9.
    Tosteson, M. T., and Sapirstein, V. S. 1981. Protein Interactions with Lipid Bilayers. The channels of kidney plasma membrane proteolipids. J. Membr. Biol. 63:77–84.Google Scholar
  10. 10.
    Sapirstein, V. S., and Rounds, T. C. 1983. Circular dichroism and fluorescence studies on a cation channel forming plasma membrane proteolipid. Biochem. 22:3330–3335.Google Scholar
  11. 11.
    Fischer, I., and Sapirstein V. S. 1986. Characterization and biosynthesis of the plasma membrane proteolipid protein in neural tissue. J. Neurochem. 47:232–238.Google Scholar
  12. 12.
    Sapirstein, V. S., Nolan, C., Stern, Ciocci, M., and Masur, S. K. 1988. Identification of the plasma membrane proteolipid protein as a constituent of brain coated vesicles and synaptic plasma membrane. J. Neurochem. 51 (3):925–933.Google Scholar
  13. 13.
    Fischer, I., Cochary, E., Bizzozero, O., and Sapirstein, V.S. 1989. The plasma membrane proteolipid is enriched in myelin and oligodendrocytes. Trans. Amer. Soc. for Neurochem. 20(1):343.Google Scholar
  14. 14.
    Sapirstein, V.S., Nolan, C., Puszkin, S., Marks, N., and Braun P. 1990. Regulation of white matter coated vesicles. Trans. Amer. Soc. for Neurochem. 21(1):233.Google Scholar
  15. 15.
    Cochary, E.F., Bizzozero, O.A., Sapirstein, V.S., Nolan, C.E., and Fischer, I. 1990. Presence of the plasma membrane proteolipid (plasmolipin) in myelin. J. Neurochem. 55:602–610.Google Scholar
  16. 16.
    Waehneldt, T.V., and Mandel, P. 1972. Isolation of rat-brain myelin monitored by polyacrylamide gel electrophoresis of dodecyl sulfate-extracted proteins. Brain Res. 40:419–436.Google Scholar
  17. 17.
    Reiss, D.S., Lees, M.B., and Sapirstein, V.S. 1980. Is Na+K ATPase a myelin-associated enzyme? J. Neurochem. 36(4):1418–1426.Google Scholar
  18. 18.
    Detskey, P.Z., Bigbee, J.W., and DeVries, G.H. 1988. Isolation and characterization of axolemma-enriched fractions from discrete areas of bovine CNS. Neurochem. Res. 13:449–454.Google Scholar
  19. 19.
    Flynn, C.J., Nolan, C.E. and Sapirstein, V.S. 1989. Analysis of membrane constituents in purified rat brain axolemma. Trans. Amer. Soc. Neurochem. 20:139.Google Scholar
  20. 20.
    Cotman, C.W. and Matthews, D.A. 1971. Synaptic plasma membranes from rat brain symaptosomes: isolation and partial characterization. Biochim. Biophys. Acta 249:380–394.Google Scholar
  21. 21.
    Laemmli, U.K. 1970. Cleavage of structural proteins of the head of bacteriophage T4. Nature 227:680–685.Google Scholar
  22. 22.
    Fischer, I., Kosik, K.S., and Sapirstein, V.S., 1987. Heterogeneity of microtubule-associated protein (MAP2) in vertebrate brains. Brain Res. 436:39–48.Google Scholar
  23. 23.
    Grayson, S. 1988. Human epidermal proteolipids: isolation, partial characterization, and subcellular localization. J. Invest. Derm. 90:185–192.Google Scholar
  24. 24.
    Arai, H., Berne M. and Forgac, M. 1987. Inhibition of the coated vesicle proton pump and labelling of a 17,000 dalton polypeptide by N,N′-dicyclohexyl-cabodiimide. J. Biol. Chem. 262:110006–11011.Google Scholar
  25. 25.
    Hou Lin, L.F., and Lees, M.B. 1982. Interactions of dicyclohexylcarbodiimide with myelin proteolipid. Proc. natl. Acad. Sci. 79:941–945.Google Scholar
  26. 26.
    Bizzozero, O.A., McGarry, J.F., and Lees, M.B. 1987. Autoacylation of myelin proteolipid protein with acyl coenzyme A. J. Biochem. 262(8):13550–7.Google Scholar
  27. 27.
    Burgisser, P., Matthieu, J.M., Jeserich, G., and Waehneldt, T.V. 1986. Myelin lipids: a phylogenetic study. Neurochem. Res. 11(9):1261–1272.Google Scholar
  28. 28.
    Barres, B.A., Chun, L.L.Y., and Corey, D.P. 1990. Ion channels in vertebrate glia. Pp. 441–474in Cowan, Shooter, Stevens and Thompson (eds.), Annual Review of Neuroscience, Annual Reviews Inc., Palo Alto, CA.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Victor S. Sapirstein
    • 1
    • 2
  • Charles E. Nolan
    • 1
    • 2
  • Itzhak Fischer
    • 3
    • 4
  • Elizabeth Cochary
    • 3
    • 4
  • Susana Blau
    • 1
    • 2
  • Cheryl J. Flynn
    • 1
    • 2
  1. 1.The Division of NeurobiologyThe Nathan Kline InstituteOrangeburg
  2. 2.Department of PsychiatryNew York University School of MedicineNew York
  3. 3.The Department of BiochemistryThe Eunice Kennedy Shriver CenterWaltham
  4. 4.Department of NeurologyHarvard Medical SchoolBoston

Personalised recommendations