Neurochemical Research

, Volume 16, Issue 7, pp 827–832 | Cite as

Effect of hypoxia on protein composition of synaptic plasma membranes from cerebral cortex during aging

  • Roberto F. Villa
  • Leena Turpeenoja
  • Grazia Magrì
  • Antonella Gorini
  • Nicolò Ragusa
  • Anna Maria Giuffrida-Stella
Original Articles


The effect of hypoxia on the protein composition of synaptic plasma membranes (SPM) isolated from cerebral cortex of rats at 4, 12, and 24 months of age was investigated. The proteins were separated by SDS polyacrilamide gel electrophoresis and the percent content was evaluated by measuring the optical density of the stained gels. After hypoxic treatment various proteins showed significant changes. Some proteins were only affected at 4 and 12 months of age and not at 24 months. The various modified porteins may be identified according to their molecular weight, as follows: the 18 kDa protein with calmodulin; the 23 kDa protein with D3 subunits; the 28 kDa protein could contain the δ subunit of the Ca2+ channel. The changes in the amount of some SPM proteins during hypoxia is consistent with the alteration in membrane polarization and neurotransmission observed in this condition. The effect of aging at the synaptosomal level seems to be a selective process; after hypoxia the age-related changes of many proteins are more pronounced.

Key Words

SPM aging hypoxia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hansford, R. G. 1983. Bioenergetics in aging. Biochim. Biophys Acta 726:41–80.PubMedGoogle Scholar
  2. 2.
    Gordon, S. M., and Finch, C. E. 1974. An electrophoretic study of protein synthesis in brain regions of senescent male mice. Exp. Gerontol. 9:269–273.Google Scholar
  3. 3.
    Dunlop, D. S., Van Elden, W., and Laitha, A. 1977. Developmental effects of protein synthesis rates in regions of the CNS in vivo and in vitro. J. Neurochem. 29:939–945.PubMedGoogle Scholar
  4. 4.
    Dwyer, B. E., Fando, J. L., and Wasterlain, C. G. 1980. Rat brain protein synthesis declines during postdevelopmental aging. J. Neurochem. 35:746–749.PubMedGoogle Scholar
  5. 5.
    Fando, J. L., Salinas, J., and Wasterlain, C. G. 1980. Age-dependent changes in brain protein synthesis in the rat. Neurochem. Res. 5:373–378.PubMedGoogle Scholar
  6. 6.
    Shahbazian, F. M., Jacobs, M., and Lajtha, A. 1986. Rates of amino acid incorporation into particulate proteins in vivo and in slices of young and adult rats. J. Neurosci. Res. 15:359–366.PubMedGoogle Scholar
  7. 7.
    Avola, R., Condorelli, D. F., Ragusa, N., Alberghina, M., Renis, M., and Giuffrida-Stella, A. M. 1988. Rate of protein synthesis in various brain regions and subcellular fractions during aging. Neurochem. Res. 13:337–342.PubMedGoogle Scholar
  8. 8.
    Giuffrida-Stella, A. M. and Lajtha, A. 1987. Macromolecular turnover in brain during aging. Gerontology 33:136–148.PubMedGoogle Scholar
  9. 9.
    Cicero, T. J., Ferrendelli, J. A., Suntzeff, V., and Moore, B. W. 1972. Regional changes in CNS levels of the S-100 and 14-3-2 proteins during development and aging of the mouse. J. Neurochem. 19:2119–2125.PubMedGoogle Scholar
  10. 10.
    Hoskins, B., and Scott, J. H. 1984. Changes in activities of calmodulin-mediated enzymes in rat brain during aging. Mech. Ageing Devel. 26:231–239.Google Scholar
  11. 11.
    Hoskins, B., Ho. I. K., and Meydrech, E. F. 1985. Effects of aging and morphine administration on calmodulin and calmodulin-regulated enzymes in striata of mice. J. Neurochem. 44:1069–1073.PubMedGoogle Scholar
  12. 12.
    Cosgrowe, J. W., Atack, J. R., and Rapoport, S. 1987. Regional analysis of rat brain proteins during senescence. Exp. Gerontol. 22:187–198.PubMedGoogle Scholar
  13. 13.
    Villa, R. F., Gorini, A., Zanada, F., and Benzi, G. 1986. Changes of acetylcholinesterase and (Na+−K+)ATPase activities of synaptic plasma membranes from cerebral cortex of 4 and 8 monthold-rats. It. J. Biochem. 35:120A-123A.Google Scholar
  14. 14.
    Siesjo, B. K. 1978. Brain Metabolism, Wiley Interscience, New York.Google Scholar
  15. 15.
    Duffy, T. E., Nelson, S. R., and Lowry, O. H. 1972. Cerebral carbohydrate metabolism during acute hypoxia and recovery. J. Neurochem. 19:959–977.PubMedGoogle Scholar
  16. 16.
    Bachelard, H. S., Lewis, L. D., Ponten, U., and Siesjo, B. K. 1974. Mechanism activating glycolysis in the brain in arterial hypoxia. J. Neurochem. 22:395–401.PubMedGoogle Scholar
  17. 17.
    Borgstrom, L., Nerberg, K., and Siesjo, B. K. 1976. Glucose consumption in rat cerebral cortex in normoxia, hypoxia and hypercapnia. Acta Physiol. Scand. 96:569–574.PubMedGoogle Scholar
  18. 18.
    Morimoto, K., Brengman, J., and Yanagihara, T. 1978. Further evaluation of polypeptide synthesis in cerebral anoxia, hypoxia and ischemia. J. Neurochem. 31:1277–1282.PubMedGoogle Scholar
  19. 19.
    Villa, R. F. 1981. Brain enzymes and ischemia. Eur. Neurol. 20:245–252.PubMedGoogle Scholar
  20. 20.
    Villa, R. F., Benzi, G., and Curti, D. 1981 The effect of ischemia and pharmacological treatment evaluated on synaptosomes and purified mitochondria from rat cerebral cortex. Biochem. Pharmacol. 30:2399–2408.Google Scholar
  21. 21.
    Benzi, G., Arrigoni, E., Pastoris, O., Villa, R. F., Dossena, M., Agnoli, A., and Giuffrida, A. M. 1982. Drug action on the metabolic changes induced by acute hypoxia on synaptosomes from the cerebral cortex. J. Cereb. Blood. Flow. Metabol. 2:229–239.Google Scholar
  22. 22.
    Villa, R. F., Marzatico, F., and Benzi, G., 1983. Changes induced by ischemia on some cerebral enzymatic activities related to energy transduction and amino acids metabolism Neurochem. Res. 8:269–290.PubMedGoogle Scholar
  23. 23.
    Turpeenoja, L., Villa, R. F., Magrì, G., and Giuffrida-Stella, A. M. 1988. Changes in mitochondrial membrane proteins in rat cerebellum during aging. Neurochem. Res. 13:859–865.PubMedGoogle Scholar
  24. 24.
    Turpeenoja, L., Villa, R. F., Magrì, G., Ingrao, F., Gorini, A., Ragusa, N., and Giuffrida-Stella, A. M. 1990. Modifications of synaptosomal plasma membrane protein composition in various brain regions during aging. Submitted for publication.Google Scholar
  25. 25.
    Benzi, G., and Giuffrida, A. M. 1985. Bioenergetics of hypoxic brain during aging. Mol. Physiol. 8:535–547.Google Scholar
  26. 26.
    Benzi, G., and Giuffrida, A. M. 1987. Changes of synaptosomal energy metabolism induced by hypoxia during aging. Neurochem. Res. 12:149–157.PubMedGoogle Scholar
  27. 27.
    Gray, E. G., and Whittaker, V. P. 1962. The isolation of nerve endings from brain: an electronmicroscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96:79–88.PubMedGoogle Scholar
  28. 28.
    De Robertis, E., Pellegrino de Iraldi, A., Rodriguez de Lores Arnaiz, G., and Salganicoff, L. 1962. Cholinergic and non-cholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J. Neurochem. 9:23–35.PubMedGoogle Scholar
  29. 29.
    Turpeenoja L., Lahdesmaki, P. 1984. Extraction of presynaptic membrane components binding labelled amino acids. Acta Univ. Temperensis 21:37–46.Google Scholar
  30. 30.
    Laemmli, U. K. 1970. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–684.Google Scholar
  31. 31.
    Lowry, O. M., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  32. 32.
    Mahler, H. 1984. Synaptic proteins. Vol. 7, 2nd ed. Pages. 111–134in Lajtha, A. (ed.), Handbook of Neurochemistry, Plenum Press, New York.Google Scholar
  33. 33.
    Shelanski, M. L., and Selkoe, D. J. 1981. Protein changes in the ageing brain. pp. 560–591,in Davison, A. N., and Thompson, R. H. S. (eds.), The Molecular Basis of Neurophatology, Edward Arnold Ltd., London.Google Scholar
  34. 34.
    Nagy, K., Simon, P., and Nagy, I. 1983. Studies in synaptosomal membrane of rat brain during aging. Biochim. Biophys. Res. Commun. 117:686–694.Google Scholar
  35. 35.
    Mahler, H. 1977. Proteins of the synaptic membrane. Neurochem. Res. 2:119–147.Google Scholar
  36. 36.
    Babitch, J. A. 1981. Synaptic plasma membrane tubulin may be an integral constituent. J. Neurochem. 37:1394–1400.PubMedGoogle Scholar
  37. 37.
    von Hungen, K., Chin, R. C., and Baxter, C. F. 1981. Brain tubulin microheterogeneity in the mouse during development and aging. J. Neurochem. 37:511–514.PubMedGoogle Scholar
  38. 38.
    Yan, S. B., Hwang, S., Rustan, T. D., and Frey, W. H. 1985. Human brain tubulin purification. Decrease in soluble tubulin with age. Neurochem. Res. 10:1–18.PubMedGoogle Scholar
  39. 39.
    Catterall, W. A. 1988. Molecular properties of sodium and calcium channels. Abstracts of the 14th Int. Congress of Biochemistry, Th, July 14. page 24.Google Scholar
  40. 40.
    Bock, E. 1984. Membrane markers of the nervous system. Vol 7, 2nd ed. Pages. 231–244,in Lajtha, A. (ed.), Handbook of Neurochemistry, Plenum Press, New York.Google Scholar
  41. 41.
    May, P. C., Sevenson, J. A., Osterburg, H. H., and Finch, C. E. 1988. Compartmentalization of camodulin and tubulin in the male C57BL/6J mouse brain. Heterogeneity of age changes in calmodulin compartments. Neurobiol. Ageing 8:131–137.Google Scholar
  42. 42.
    Giuffrida, A. M., Alberghina, M., Serra, I., and Viola, M. 1985. Biochemical changes of lipid, nucleic acid and protein metabolism in brain regions during hypoxia. Effect of CDP-choline. Pages 217–238,in Zappia, V., Kennedy, E. P., Nilsson B. I., and Galletti, P. (eds.), Novel Biochemical, Pharmacological and Clinical Aspects of Cytidinediphosphocholine. Elsevier Science Publishing Company Inc., New York.Google Scholar
  43. 43.
    Gorini, A., Arnaboldi, R., and Villa, R. F. 1989. Age-related changes in acetylcholinesterase activity of synaptic plasma membranes from rat cerebral cortex frontal area. It. J. Biochem. 38:112A-115A.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Roberto F. Villa
    • 1
  • Leena Turpeenoja
    • 2
  • Grazia Magrì
    • 3
  • Antonella Gorini
    • 1
  • Nicolò Ragusa
    • 3
  • Anna Maria Giuffrida-Stella
    • 3
  1. 1.Institute of Pharmacology, Faculty of ScienceUniversity of PaviaPaviaItaly
  2. 2.Department of BiochemistryUniversity of OuluOuluFinland
  3. 3.Institute of Biochemistry, Faculty of MedicineUniversity of CataniaCataniaItaly

Personalised recommendations