Neurochemical Research

, Volume 16, Issue 7, pp 749–755 | Cite as

Heterogeneity in the β-subunit of translational initiation factor eIF-2 during brain development

  • María Elena Martín
  • Teresa Montero
  • Alberto Alcázar
  • Ana García
  • Juan L. Fando
  • Matilde Salinas
Original Articles


We have detected by immunoblotting analysis of crude fractions from suckling and adult rat brain, resolved by two-dimensional isoelectric focusing-dodecyl sulfate polyacrylamide gel electrophoresis, the presence of two different forms of the β subunit of polypeptide initiation factor 2 (eIF-2). These two forms differ in their apparent molecular weights and also in their isoelectric point values. Quantitation of both forms in the crude fractions shows that, the most basic form β1 (pI: 6.1, 52 kDa), is present in higher levels of the salt wash ribosomal fractions obtained from both, suckling and adult animals, than in the postmicrosomal fraction corresponding to the same animals. The most acidic form, β2 (pI: 5.9, 50 kDa), is present in the highest level in the postmicrosomal supernatant from adult animals. A close parallelism is found between β1 levels and eIF-2 activity.

Key Words

Initiation factor eIF-2 post-translational modifications of proteins protein synthesis brain development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pain, V. M. 1986. Initiation of protein synthesis in mammalian cells. Biochem. J. 235:625–637.PubMedGoogle Scholar
  2. 2.
    Rhoads, R. E. 1988. Cap recognition and the entry of mRNA in the protein synthesis initiation cycle. Trends. Biochem. Sci. 13:52–56.PubMedGoogle Scholar
  3. 3.
    Sarre, T. F. 1989. The phosphorylation of eukaryotic initiation factor 2: a principle of translational control in mammalian cells. BioSystems 22:311–325.PubMedGoogle Scholar
  4. 4.
    Ochoa, S. 1983. Regulation of protein synthesis initiation in eukaryotes. Arch. Biochem. Biophys. 223:325–349.PubMedGoogle Scholar
  5. 5.
    Duncan, R., and Hershey, W. B. 1983. Identification and quantitation of level of protein synthesis initiation factors in crude HeLa cell lysates by two-dimensional polyacrylamide gel electrophoresis. J. Biol. Chem., 258:7228–7235.PubMedGoogle Scholar
  6. 6.
    Duncan, R., and Hershey, W. B. 1985. Regulation of initiation factors during translational repression caused by serum depletion. Abundance, synthesis, and turnover rates. J. Biol. Chem. 260:5486–5492.PubMedGoogle Scholar
  7. 7.
    Duncan, R., and Hershey, W. B. 1985. Regulation of initiation factors during translational repression. Covalent modification. J. Biol. Chem. 260:5493–5497.PubMedGoogle Scholar
  8. 8.
    Clark, S. J., Colthurst, D. R., and Proud, C. G. 1988. Structure and phosphorylation of eukaryotic initiation factor 2. Casein kinase and protein kinase C phosphorylate distinct but adjacent sites in the β subunit. Biochim. Biophys. Acta. 968:211–219.PubMedGoogle Scholar
  9. 9.
    Alcazar, A., Mendez, E., Fando, J. L., and Salinas, M. 1988. Specific phosphorylation of the β subunit of eIF-2 factor from brain by three different protein kinases. Biochem. Biophys. Res. Commun. 153:313–320.PubMedGoogle Scholar
  10. 10.
    Jagus, R., Crouch, D., Konieczny, A., and Safer, B. 1982. The role of phosphorylation in the regulation of eukaryotic initiation factor 2 activity. Curr. Top. Cell. Regul. 21:35–63.PubMedGoogle Scholar
  11. 11.
    Kimball, S. R., Everson, W. V., Myers L. M., and Jefferson, L. S. 1987. Purification and characterization of eukaryotic initiation factor 2 and a guanine nucleotide exchange factor from rat liver. J. Biol. Chem. 262:2220–2227.PubMedGoogle Scholar
  12. 12.
    Dholakia, J. N., and Wahba, A. J. 1987. The isolation and characterization from rabbit reticulocytes of two forms of eukaryotic initiation factor 2 having different β-polypeptides. J. Biol. Chem. 262:10164–10170.PubMedGoogle Scholar
  13. 13.
    Price, N. T., Nakielny, S. F., Clark, S. J., and Proud, C. G. 1989. The two forms of the β-subunit of initiation factor-2 from reticulocyte lysates arise from proteolytic degradation. Biochem. Biophys. Acta. 1008:177–182.PubMedGoogle Scholar
  14. 14.
    Fando, J. L., Dominguez, F., and Herrera, E. 1981. Tryptophan overload in the pregnant rat: effect on brain amino acid levels and in vitro protein synthesis. J. Neurochem. 37:824–829.PubMedGoogle Scholar
  15. 15.
    Dunlop, D. S., Elden, W. V., and Lajtha, A. 1977. Developmental effects on protein synthesis rates in regions of the CNS in vivo and in vitro. J. Neurochem. 29:939–945.PubMedGoogle Scholar
  16. 16.
    Calés, C., Salinas, M., Alcázar, A., and Fando, J. L. 1988. Differential subcellular distribution of guanine nucleotide exchange factor in suckling and adult rat brain. Neurosc. Letters 87:271–276.Google Scholar
  17. 17.
    Martín, E., Alcázar, A., and Salinas, M. 1990. Subcellular and regional distribution of casein kinase II and initiation factor 2 activities during rat brain development. Int. J. Devl. Neurosc. 8:47–54.Google Scholar
  18. 18.
    Calés, C., Salinas, M., and Fando, J. L. 1985. Isolation of eukaryotic initiation factor 2 from rat brain. J. Neurochem. 45:1298–1302.PubMedGoogle Scholar
  19. 19.
    Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.PubMedGoogle Scholar
  20. 20.
    Vaitukaitis, J. L. 1981. Production of antisera with small doses of immunogen: multiple intradermal injections. Methods in Enzymology 73:46–52.PubMedGoogle Scholar
  21. 21.
    Hawkes, R., Niday, E., and Gordon, J. 1982. The dot-immunobinding assay. Anal. Biochem. 119:484–491.Google Scholar
  22. 22.
    Laemmli, U. K. 1970. Clearage of structural proteins during assembly of the head of bacteriophage T4 Nature 227:680–685.PubMedGoogle Scholar
  23. 23.
    O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis. J. Biol. Chem. 250:4007–4021.PubMedGoogle Scholar
  24. 24.
    Johnson, T. C. 1976. Regulation of protein synthesis during post-natal maturation of the brain. J. Neurochem. 27:17–23.PubMedGoogle Scholar
  25. 25.
    Dunlop, D. S., Bodony, R., and Lajtha, A. 1984. RNA concentration and protein synthesis in rat brain during neural development. Brain Res. 294:148–151.PubMedGoogle Scholar
  26. 26.
    Calés, C., Fando, J. L., Azuara, C., and Salinas, M. 1986. Developmental studies of the first step of the initiation of protein synthesis, role for initiation factor 2. Mech. Ageing Devl. 33:147–156.Google Scholar
  27. 27.
    Vargas, R., and Castañeda, M. 1983. Age-dependent decrease in the activity of protein synthesis initiation factors in rat brain. Mech. Ageing Devl. 21:183–191.Google Scholar
  28. 28.
    Kimball, S. R., Rannels, S. L., Elensky, M. B., and Jefferson, L. S. 1988. Quantitation of proteins by dot-immunobinding assay. A comparison of visualization methods using eukaryotic initiation factor 2 and a monospecific antibody. J. Immunol. Methods 106:217–223.PubMedGoogle Scholar
  29. 29.
    Maurides, P. A., Akkaraju, G. R., and Jagus, R. 1989. Evaluation of protein phosphorylation state by a combination of vertical slab gel isoelectric focusing and immunoblotting. Anal. Biochem. 183:144–151.PubMedGoogle Scholar
  30. 30.
    Pathak, V. K., Nielsen, P. J., Trachsel, H., and Hershey J. W. B. 1988. Structure of β subunit of translational initiation factor eIF-2. Cell 54:633–639.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • María Elena Martín
    • 1
  • Teresa Montero
    • 1
  • Alberto Alcázar
    • 1
  • Ana García
    • 1
  • Juan L. Fando
    • 2
  • Matilde Salinas
    • 1
  1. 1.Servicio de Bioquímica, Departamento de InvestigaciónHospital Ramón y CajalMadridSpain
  2. 2.Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaUniversidad de Alcalá de HenaresMadrid

Personalised recommendations