Skip to main content
Log in

ATP citrate lyase in cholinergic nerve endings

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The activity of ATP-citrate lyase in homogenates of five selected rat brain regions varied from 2.93 to 6.90 nmol/min/mg of protein in the following order: cerebellum < hippocampus < parietal cortex < striatum < medulla oblongata and that of the choline acetyltransferase from 0.15 to 2.08 nmol/min/mg of protein in cerebellum < parietal cortex < hippocampus=medulla oblongata < striatum. No substantial differences were found in regional activities of lactate dehydrogenase, pyruvate dehydrogenase, citrate synthase or acetyl-CoA synthase. High values of relative specific activities for both choline acetyltransferase and ATP-citrate lyase were found in synaptosomal and synaptoplasmic fractions from regions with a high content of cholinergic nerve endings. There are significant correlations between these two enzyme activities in general cytocol (S3), synaptosomal (B) and synaptoplasmic (Bs) fractions from the different regions (r=0.92–0.99). These data indicate that activity of ATP-citrate lyase in cholinergic neurons is several times higher than that present in glial and noncholinergic neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker, L. A. 1979. Choline availability-choline high affinity transport an the regulation of acetylcholine synthesis. Pages 525–531,in Davis, K. L. andBerger, P. A. (eds.) Brain Acetylcholine and Neuropsychiatric Disease, Plenum Publishing Co., New York.

    Google Scholar 

  2. Cooper, D. O., andSmith, D. E. 1980. The use of choline acetyltransferase as a cholinergic marker in the determination of high-affinity choline uptake. J. Neurochem. 34:1533–1556.

    Google Scholar 

  3. Coyle, J. T., andYamamura, H. I. 1976. Neurochemical aspects of the ontogenesis of cholinergic neurons in the rat brain. Brain Research 118:429–440.

    PubMed  Google Scholar 

  4. Fonnum, F. 1969. Radiochemical micro assay for the determination of choline acetyltransferase and cholinesterase activities. Biochem. J. 115:465–472.

    PubMed  Google Scholar 

  5. Gibson, G. E., Richard, J. andBlass, J. P. 1975. Decrease synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem. J. 17–23.

  6. Gibson, G. E., andShimada, M. 1980. Studies on metabolic pathway of the acetyl group for acetylcholine synthesis. Biochem. Pharmacol. 29:167–174.

    PubMed  Google Scholar 

  7. Hayashi, H., andKato, T. 1978. Acetyl-CoA synthesizing enzyme activities in single nerve cell bodies of rabbit. J. Neurochem. 21:861–869.

    Google Scholar 

  8. Kornberg, A. 1956. Lactic dehydrogenase of muscle. Pages 441–442,in Colowick, S. P. andKaplan, N. O. (eds.) Methods in Enzymology, Vol. 1, Academic Press, New York.

    Google Scholar 

  9. Kuczenski, R., Segal, D. S., andMandell, A. J. 1975. Regional and subcellular distribution and kinetic properties of rat brain choline acetyltransferase—some functional considerations. J. Neurochem. 24:39–45.

    PubMed  Google Scholar 

  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  11. Patel, M. S., andOwen, O. E. 1976. Lipogenesis from ketone bodies in rat brain. Biochem. J. 156:603–607.

    PubMed  Google Scholar 

  12. Perry, E. K., Perry, R. H., Tomlinson, B. E., Blessed, G., andGibson, P. H. 1980. Coenzyme A-acetylating enzymes in Alzheimer's disease: possible cholinergic “compartment” of pyruvate dehydrogenase. Neurosci. Letters. 18:105–110.

    Google Scholar 

  13. Popov, N., Pohle, W., Rosler, V., andMatthies, H. 1976. Regionale verteilung von γ-aminobuttersaure, glutaminsaure, asparaginsaure, dopamin, noradrenalin und serotonin im rattenhirn. Acta Biol. Med. German. 18:695–702.

    Google Scholar 

  14. Reijnierse, G. L. A., Veldstra, H., andVan den Berg, C. J. 1975. Short chain fatty acid synthetase in brain. Biochem. J. 152:477–484.

    PubMed  Google Scholar 

  15. Srere, P. A. 1959. The citrate cleavage enzyme. I. Distribution and purification. J. Biol. Chem. 234:2544–2547.

    PubMed  Google Scholar 

  16. Srere, P. A. 1965. The molecular physiology of citrate. Nature. 205:766–770.

    Google Scholar 

  17. Srere, P. A., Basil, H., andGonen, L. 1963. The citrate condensing enzyme of pigeon breast muscle and moth flight muscle. Acta Chem. Scand. 17:129.

    Google Scholar 

  18. Sterling, G. H., andO'Neil, J. J. 1978. Citrate as the precursor of the acetyl moiety of acetylcholine. J. Neurochem. 31:525–530.

    PubMed  Google Scholar 

  19. Szutowicz, A. 1978. Regional and developmental correlations between choline acetyltransferase and ATP-citrate oxaloacetate lyase in rat brain Pages 489–499,in Matthies, H., Krug, M., andPopov, N. (eds.) Biological Aspects of Learning, Memory Formation and Ontogeny of the CNS, Akademie Verlag, Berlin, G.D.R.

    Google Scholar 

  20. Szutowicz, A., Bielarczyk, H., andLysiak, W. 1981. The role of citrate derived from glucose in the acetylcholine synthesis in rat brain synaptosomes. Int. J. Biochem. 13:887–892.

    PubMed  Google Scholar 

  21. Szutowicz, A., Kabata, J., andŁysiak, W. 1980. ATP-citrate lyase and other enzymes of acetyl-CoA metabolism in developing rat cerebrum and cerebellum. Int. J. Biochem. 11:545–549.

    PubMed  Google Scholar 

  22. Szutowicz, A., andŁysiak, W. 1980. Regional and subcellular distribution of ATP-citrate lyase and other enzymes of acetyl-CoA metabolism in rat brain. J. Neurochem. 35:775–785.

    PubMed  Google Scholar 

  23. Szutowicz, A., Łysiak, W., andAngielski, S. 1977. The effect of (−)hydroxycitrate on pyruvate metabolism in rat brain synaptosomes. J. Neurochem. 29:375–378.

    PubMed  Google Scholar 

  24. Szutowicz, A., Stępień, M., andPiec, G. 1981. Determination of pyruvate dehydrogenase and acetyl-CoA synthetase using citrate synthase. Anal. Biochem. 115:81–87.

    PubMed  Google Scholar 

  25. Takano, Y., Kohjimoto, Y., Uchimura, K., andKamiya, H. 1981. Mapping of the distribution of high affinity uptake and choline acetyltransferase in the striatum. Brain Res. 194:583–587.

    Google Scholar 

  26. Tuček, S. 1967. Subcellular distribution of acetyl-CoA synthetase, ATP citrate lyase, citrate synthase, choline acetyltransferase, fumarate hydratase and lactate dehydrogenase in mammalian brain tissue. J. Neurochem. 14:531–545.

    PubMed  Google Scholar 

  27. Tuček, S., andCheng, S. C. 1974. Provenance of acetyl group of acetylcholine and compartmentation of acetyl-CoA and Krebs cycle intermediates in the brain in vivo. J. Neurochem. 22:893–914.

    PubMed  Google Scholar 

  28. Whittaker, V. P. 1969. The synaptosome. Pages 327–364,in Lajtha, A. (ed.) Handbook of Neurochemistry Vol. 2, Plenum Press, New York.

    Google Scholar 

  29. Yamamura, H. I., andSnyder, S. H. 1973. High affinity transport of choline into synaptosomes of rat brain. J. Neurochem. 21:1355–1374.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szutowicz, A., Stcepień, M., Bielarczyk, H. et al. ATP citrate lyase in cholinergic nerve endings. Neurochem Res 7, 799–810 (1982). https://doi.org/10.1007/BF00965673

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965673

Keywords

Navigation