Skip to main content
Log in

Metabolic profile of hippocampal regions after bilateral ischemia and recovery

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Microanalysis methods were used to determine the effect of bilateral carotid occlusion on net levels of energy metabolites in discrete cellular regions of the hippocampus and dentate gyrus of the Mongolian gerbil. Glucose, glycogen, ATP and phosphocreatine levels were not decreased after one minute of bilateral occlusion. Three minutes of ischemia, however, produced a dramatic fall in net levels with no further decrease observed at fifteen minutes. Re-establishment of blood flow for five minutes after a fifteen minute ischemic episode resulted in replenishment of metabolites to pre-ischemic levels. Glucose was increased two to three times in sham-operated animals as compared to control (non-operated) animals. The increase was the result of the Na-pentobarbital anesthetic employed. The present data indicate that regions of the hippocampus and dentate gyrus respond in a uniform manner to bilateral occlusion of the carotid arteries. Further, most cells maintained enough viability to resume production of high-energy phosphate and carbohydrate metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bubis, J. J., Fujimoto, T., Ito, U., Mrsulja, B. J., Spatz, M. andKlatzo, I. 1976. Experimental cerebral ischemia in Mongolian gerbils. V. Ultrastructural changes in H3 section of hippocampus. Acta Neuropathol. 36(3):285–294.

    PubMed  Google Scholar 

  2. Dixon, F. D., andMeyer, A. 1936. Respiration of brain. Biochem. J. 30:1577–1582.

    Google Scholar 

  3. Ferrendelli, J. A., Gay, M. H., Sedgwick, W. G., andChang, M. M. 1972. Quick freezing of the murine CNS: Comparison of regional cooling rates and metabolite levels when using liquid nitrogen or freon-12. J. Neurochem. 19:979–987.

    PubMed  Google Scholar 

  4. Folbergrova, J., Lowry, O. H., andPassonneau, J. V. 1970. Changes in metabolites of the energy reserves in individual layers of mouse cerebral cortex and subjacent white matter during ischaemia and anaesthesia. J. Neurochem. 17:1155–1162.

    PubMed  Google Scholar 

  5. Gatfield, P. D., Lowry, O. H., Schulz, D. W., andPassonneau, J. V. 1966. Regional energy reserves in mouse brain and changes with ischaemia and anaesthesia. J. Neurochem. 13:185–195.

    PubMed  Google Scholar 

  6. Kahn, K. 1972. The natural course of experimental cerebral infarction in the gerbil. Neurology 22:510–515.

    PubMed  Google Scholar 

  7. Kobayashi, M., Lust, W. D., andPassonneau, W. D. 1977. Concentrations of energy metabolites and cyclic nucleotides during and after bilateral ischemia in the gerbil cortex. J. Neurochem. 29:53–59.

    PubMed  Google Scholar 

  8. Levine, S., andPayan, H. 1966. Effects of ischemia and other procedures on the brain and retina of the gerbil. Exp. Neurol. 16:255–262.

    PubMed  Google Scholar 

  9. Levy, D. E., andDuffy, T. E. 1975. Effects of ischemia on energy metabolism in the gerbil cerebral cortex. J. Neurochem. 24:1287–1289.

    PubMed  Google Scholar 

  10. Levy, D. E., andDuffy, T. E. 1977. Cerebral energy metabolism during transient ischemia and recovery in the gerbil. J. Neurochem. 28:63–70.

    PubMed  Google Scholar 

  11. Lowry, O. H., andPassonneau, J. V. 1972. A Flexible System of Enzymatic Analysis. Academic Press, New York.

    Google Scholar 

  12. McCandless, D. W., Feussner, G. K., Lust, W. D., andPassonneau, J. V. 1979. Metabolite levels in brain following experimental seizures: the effects of maximal electroshock and phenytoin in cerebellar layers. J. Neurochem. 32:743–753.

    PubMed  Google Scholar 

  13. McCandless, D. W., Feussner, G. K., Lust, W. D., andPassonneau, J. V. 1979. Sparing of metabolic stress in Purkinje cells after maximal electroshock. Proc. Natl. Acad. Sci. USA. 76(3):1482–1484.

    PubMed  Google Scholar 

  14. Mrsulja, B. B., Mrsulja, B. J., Itok, U., Walker, Jr., J. T., Spatz, M. andKlatzo, I. 1975. Experimental cerebral ischemia in Mongolian gerbils, II. Changes in carbohydrates. Acta Neuropath. 33:91–103.

    PubMed  Google Scholar 

  15. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., andShinohara, M. 1977. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:877–916.

    PubMed  Google Scholar 

  16. Van Buren, J. M., andBrooke, R. C. 1972. The mesial temporal substratum of memory. Brain 95:599–632.

    PubMed  Google Scholar 

  17. Victor, M., Angevine, Jr., J. B., Mancall, E. L., andMiller, F. C. 1961. Memory loss with lesions of the hippocampal formation. Arch. Neurol. 5:244–263.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abel, M.S., McCandless, D.W. Metabolic profile of hippocampal regions after bilateral ischemia and recovery. Neurochem Res 7, 789–797 (1982). https://doi.org/10.1007/BF00965672

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965672

Keywords

Navigation