Neurochemical Research

, Volume 9, Issue 6, pp 849–862 | Cite as

Substrate specificity and distribution of acid β-galactosidase activities in seizure-susceptible and non-susceptible strains of mice

  • D. F. Wheeler
  • H. S. Bachelard
Original Articles


The properties and distribution of β-galactosidase were studied in the mouse brain using the artificial substrate methylumbelliferyl-β-galactoside. Enzyme activities were compared between an audiogenic seizure-susceptible mouse strain (DBA/2) and three non-susceptible strains of mice (BALB/c, C3H/He and Swiss A2G). At all ages, DBA/2 mice have significantly lower β-galactosidase activity compared with the three other mouse strains: this is attributed to the different alleles present at the Bgs locus. The low activity of β-galactosidase is also evident when the natural substrate GMI-ganglioside is hydrolyzed. In contrast to this low GMI-ganglioside-β-galactosidase activity, there is no difference in the activity of the second form of acid β-galactosidase, galactosylceramidase, in DBA/2 mice at 7 and 14 days. However, at 21 and 28 days the activity is significantly lower in DBA/2 mice compared with the other strains of mice. These results on β-galactosidase activity in the brain of seizure-susceptible and non-susceptible mice are discussed in relation to published levels of GMI-ganglioside and galactosylceramide present in the developing mouse brain.


Enzyme Activity Substrate Specificity Mouse Brain Mouse Strain Natural Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wheeler, D. F., Contreras, N. E. I. R., andBachelard, H. S. 1982. DNA content and enzymic activities in the auditory regions of seizure-susceptible and non-susceptible strains of mice. Neurochemical Res. 7:1075–1087.Google Scholar
  2. 2.
    Seyfried, T. N. 1979. Audiogenic seizures in mice. Fed. Proc. 38:2399–2404.PubMedGoogle Scholar
  3. 3.
    Saunders, J. C., Bock, G. R., Chen, C-S., andGates, G. R. 1972. The effects of priming for audiogenic seizures on cochlear and behavioural responses in BALB/c mice. Exp. Neurol. 36:426–436.PubMedGoogle Scholar
  4. 4.
    Schreiber, R. A. 1981. Developmental changes in brain glucose, glycogen, phosphocreatine, and ATP levels in DBA/2J and C57BL/6J mice, and audiogenic seizures. J. Neurochem. 37:655–661.PubMedGoogle Scholar
  5. 5.
    Kellogg, C. 1976. Audiogenic seizures: relation to age and mechanisms of monoamine neurotransmission. Brain Res. 106:87–103.PubMedGoogle Scholar
  6. 6.
    Seyfried, T. N., Yu, R. K., andGlaser, G. H. 1980. Genetic analysis of audiogenic seizure susceptibility in C57BL/6J×DBA/2J recombinant inbred strains of mice. Genetics 94:701–718.PubMedGoogle Scholar
  7. 7.
    Seyfried, T. N., Glaser, G. H., andYu, R. K. 1978. Developmental analysis of regional brain growth and audiogenic seizures in mice. Genetics 88:S90.Google Scholar
  8. 8.
    Seyfried, T. N., Glaser, G. H., andYu, R. K. 1978. Cerebral, cerebellar and brain stem gangliosides in mice susceptible to audiogenic seizures. J. Neurochem. 31:21–27.PubMedGoogle Scholar
  9. 9.
    Dreyfus, H., Harth, S., Guiliani-Debernardi, A., Roos, M., Mack, G., andMandel, P. 1982. Gangliosides in various brain areas of three inbred strains of mice. Neurochemical Res. 7:477–488.Google Scholar
  10. 10.
    Suzuki, K., Podulso, S. E., andNorton, T. W. 1967. Gangliosides in the myelin fraction of developing rats. Biochem. Biophys. Acta 144:375–381.PubMedGoogle Scholar
  11. 11.
    Yu, R. K., andYen, S. I. 1975. Gangliosides in developing mouse brain myelin. J. Neurochem 25:229–232.PubMedGoogle Scholar
  12. 12.
    Rahmann, H., Rosner, H., andBreer, H. 1976. A functional model of sialo-glycomacromolecules in synaptic transmission and memory formation. J. Theor. Biol. 57:231–237.PubMedGoogle Scholar
  13. 13.
    Leskawa, K. C., andRosenberg, A. 1981. The organization of gangliosides and other lipid components in synaptosomal plasma membranes and modifying effects of calcium ion. Cellular and Mol. Neurobiol. 1:373–388.Google Scholar
  14. 14.
    Seyfried, T. N., andYu, R. K. 1979. Genetic study of cerebrosides and gangliosides in the developing mouse brain. Trans. Am. Soc. Neurochem. 10:93.Google Scholar
  15. 15.
    Seyfried, T. N., andYu, R. K. 1980. Heterosis for brain myelin content in mice. Biochem. Genetics 18:1229–1238.Google Scholar
  16. 16.
    Facci, L., Leon, A., andToffano, G. 1982. Gangliosides and neuronal cell differentiation. Neuroscience 7:S64.Google Scholar
  17. 17.
    Icard-Liepkalns, C., Liepkalns, V. A., Yates, A. J., Rodriguez, Z. R., andStephens, R. E. 1982. Gangliosides and cell division. J. Cell. Physiol. 113:186–191.PubMedGoogle Scholar
  18. 18.
    Yamakawa, T., andNagai, Y. 1978. Glycolipids at the cell surface and their biological function. Trneds in Biochem. Sci. 3:128–131.Google Scholar
  19. 19.
    Fishman, P. H., andBrady, R. O. 1976. Biosynthesis and function of gangliosides. Science 194:906–915.PubMedGoogle Scholar
  20. 20.
    Suzuki, K. 1977. Globoid cell leukodystrophy (Krabbe disease) and GMI-gangliosidosis. Prac. Enz. of the Sphingolipidoses pp. 101–136.Google Scholar
  21. 21.
    Wolfe, L. S. 1972. Pages 233–248in N. Marks andR. Rodnight (eds.), Research Methods in Neurochemistry, Vol I: 233–248.Google Scholar
  22. 22.
    Pascal, A., andSaifer, A. 1969. Immunochemical studies of isolated human brain ganglioside components. J. Neurochem. 16:301–307.PubMedGoogle Scholar
  23. 23.
    Dreyfus, H., Urban, P. F., Edel-Harth, S., andMandel, P. 1975 Developmental patterns of gangliosides and of phospholipids in chick retina and brain. J. Neurochem. 25:245–250.PubMedGoogle Scholar
  24. 24.
    Jourdian, G. W., Dean, L. andRoseman, S. 1971. The Sialic Acids XI. A periodate-resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J. Biol. Chem. 246:430–435.PubMedGoogle Scholar
  25. 25.
    Robins, E., Hirch, H. E., andEmmons, S. E. 1968. Glycosidases in the nervous system. J. Biol. Chem. 243:4246–4252.PubMedGoogle Scholar
  26. 26.
    Hirsch, H. E. 1972. Differential determination of hexosaminidase A and B and of two forms of β-galactosidase in the layers of the human cerebellum. J. Neurochem. 19:1513–1517.PubMedGoogle Scholar
  27. 27.
    Tanaka, H., andSuzuki, K. 1977. Substrate specificities of the two genetically distinct human brain β-galactosidases. Brain Res. 122:325–335.PubMedGoogle Scholar
  28. 28.
    Yeung, K-K., Owen, A. J., andDain, J. A. 1979. A fluorometric method for monitoring the enzymic hydrolysis of terminal galactose from GMI-ganglioside. Anal. Biochem. 94:186–192.PubMedGoogle Scholar
  29. 29.
    Cotman, C. W., andMatthews, D. A. 1971. Synaptic plasma membranes from rat brain synaptosomes: isolation and partial characterization. Biochem. Biophys. Acta 249:380–394.PubMedGoogle Scholar
  30. 30.
    Booth, R. F. G., andClark, J. B. 1978. A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem. J. 176:365–370.PubMedGoogle Scholar
  31. 31.
    Marchbanks, R. M. 1967. The osmotically sensitive potassium and sodium compartments of synaptosomes. Biochem. J. 104:148–157.PubMedGoogle Scholar
  32. 32.
    Porteus, J. W., andClark, B. 1965. The isolation and characterization of subcellular components of the epithelial cells of rabbit small intestine. Biochem. J. 96:159–171.PubMedGoogle Scholar
  33. 33.
    Miller, G. L. 1959. Protein determination for large numbers of samples. Anal. Chem. 31:964.Google Scholar
  34. 34.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  35. 35.
    Felton, J., Meisler, M., andPaigen, K. 1974. A locus determining β-galactosidase activity in mouse. J. Biol. Chem. 249:3267–3272.PubMedGoogle Scholar
  36. 36.
    Lusis, A. J., Breen, G. A., andPaigen, K. 1977. Nongenetic heterogeneity of mouse β-galactosidase. J. Biol. Chem. 252:4613–4618.PubMedGoogle Scholar
  37. 37.
    Tomino, S., andMeisler, M. 1975. Biochemical and immunological studies of purified mouse β-galactosidase. J. Biol. Chem. 250:7752–7758.PubMedGoogle Scholar
  38. 38.
    Breen, G. A. M., Lusis, A. J., andPaigen, K. 1977. Linkage of genetic determinants for mouse β-galactosidase electrophoresis and activity. Genetics 85:73–84.PubMedGoogle Scholar
  39. 39.
    Paigen, K., Meisler, M., Felton, J., andChapman, V. 1976 Genetic determination of the β-galactosidase developmental program in mouse liver. Cell 9:533–539.PubMedGoogle Scholar
  40. 40.
    Meisler, M. H. 1976. Effects of the Bgs locus on mouse β-galactosidase. Biochemical Genetics 14:921–932.PubMedGoogle Scholar
  41. 41.
    Berger, F. G., Paigen, K., andMeisler, M. H. 1978. Regulations of the rate of β-galactosidase synthesis by the Bgs and Bgt loci in the mouse. J. Biol. Chem. 253:5280–5282.PubMedGoogle Scholar
  42. 42.
    Seyfried, T. N., Glaser, G. H., andYu, R. K. 1979. Genetic variability for regional brain gangliosides in five strains of young mice. Biochem. Genetics 17:43–55.Google Scholar
  43. 43.
    Kobayashi, T., Yamanaka, T., Jacobs, J. M., Teixeira, F., andSuzuki, K. 1980. The Twitcher Mouse: an enzymatically authentic model of human globoid cell leukodystrophy. (Krabbe disease). Brain Res. 202:479–483.PubMedGoogle Scholar
  44. 44.
    Hoshi, M., Williams, M., andKishimoto, Y. 1973. Characterisation of brain cerebrosides at early stages of development in the rat. J. Neurochem. 21:709–712.PubMedGoogle Scholar
  45. 45.
    Matthieu, J.-M., Widmer, S., andHerschkowitz, N. 1973 Biochemical changes in mouse brain composition during myelination. Brain Res. 55:391–402.PubMedGoogle Scholar
  46. 46.
    Vanier, M. T., Holm, M., Ohman, R., andSvennerholm, L. 1971 Developmental profiles of gangliosides in human and rat brain. J. Neurochem. 18:581–592.PubMedGoogle Scholar
  47. 47.
    Sinha, L., andSinha, A. K. 1980. Lysosomal acid hydrolases in developing human brain regions. J. Neurochem. 35:1080–1087.PubMedGoogle Scholar
  48. 48.
    Young, J. Z. 1978. Cellular basis for long-term neuronal adaptation. Biochem. Soc. Trans. 6:839–841.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • D. F. Wheeler
    • 1
  • H. S. Bachelard
    • 1
  1. 1.Department of BiochemistrySt. Thomas's Hospital Medical SchoolLondonUK

Personalised recommendations