Skip to main content
Log in

Calcium localization in nerve fibers in relation to axoplasmic transport

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Rasmussen, H., andGoodman, D. B. P. 1977. Relationships between calcium and cyclic nucleotides in cell activation. Physiol. Rev. 57:421–509.

    PubMed  Google Scholar 

  2. Cheung, W. Y. 1980. Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27.

    PubMed  Google Scholar 

  3. Means, A. R., andDedman, J. R. 1980. Calmodulin—an intracellular calcium receptor. Nature 285:73–77.

    PubMed  Google Scholar 

  4. Means, A. R., Tash, J. S., andChafouleas, J. G. 1982. Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol. Rev. 62:1–39.

    PubMed  Google Scholar 

  5. Ochs, S., Worth, R. M., andChan, S. Y. 1977. Calcium requirement for axoplasmic transport in mammalian nerve. Nature 270:748–750.

    PubMed  Google Scholar 

  6. Lavoie, P. A., Bolen, F., andHammerschlag, R. 1979. Divalent cation specificity of the calcium requirement for fast transport of proteins in axons on desheathed nerves. J. Neurochem. 32:1745–1751.

    PubMed  Google Scholar 

  7. Chan, S. Y., Ochs, S., andWorth, R. M. 1980. The requirement for calcium ions and the effect of other ions on axoplasmic transport in mammalian nerve. J. Physiol. (London) 301:477–504.

    Google Scholar 

  8. Kanje, M., Edström, A., andEkström, P. 1982. The role of Ca2+ in rapid axonal transport. Pages 294–300,in Weiss, D. G. (ed.), Axoplasmic Transport. Springer-Verlag, Heidelberg.

    Google Scholar 

  9. Ochs, S. 1972. Fast transport of materials in mammalian nerve fibers. Science 176:252–260.

    PubMed  Google Scholar 

  10. Ochs, S. 1981. Axoplasmic Transport. Chapter 22,in Siegel, G. J., Albers, R. W., Agranoff, B. W., andKatzman, R. (eds.), Basic Neurochemistry, 3rd Ed., Little, Brown and Company, Boston.

    Google Scholar 

  11. Ochs, S., andIqbal, Z. 1980. Calmodulin and calcium activation of tubulin associated Ca-ATPase. Soc. Neurosci. Abstr. 6:501.

    Google Scholar 

  12. Weiss, B., andLevin, R. M. 1978. Mechanism for selectively inhibiting the activation of cyclic nucleotide phosphodiesterase and adenylate cyclase by antipsychotic drugs. Adv. Cyclic Nucleotide Res. 9:285–303.

    PubMed  Google Scholar 

  13. Ochs, S., andIqbal, Z. 1983. The role of calcium in axoplasmic transport in nerve.in Cheung, W. Y. (ed.), Calcium and Cell Function. Vol. 3, Academic Press, New York.

    Google Scholar 

  14. Ochs, S. 1982. Block of axoplasmic transport by agents interfering with calcium flux: Cobalt, nickel, lanthanum, verapamil; and the maintenance of transport in calcium-free media by strontium. Soc. Neurosci. Abstr. 8:826.

    Google Scholar 

  15. Baker, P. F. 1972. Transport and metabolism of calcium ions in nerve. Prog. Biophys. Molec. Biol. 24:179–223.

    Google Scholar 

  16. Baker, P. F. 1976. The regulation of intracellular calcium. Symp. Soc. Exp. Biol. 30:67–88.

    Google Scholar 

  17. Brinley, F. J., Jr. 1976. Calcium and magnesium metabolism in cephalopod axons. Fed. Proc. 35:2572–2573.

    Google Scholar 

  18. Schlaepfer, W. W. 1971. Experimental alterations of neurofilaments and neurotubules by calcium and other ions. Exp. Cell Res. 67:73–80.

    PubMed  Google Scholar 

  19. Bygrave, F. L. 1978. Mitochondria and the control of intracellular calcium. Biol. Rev. 53:43–79.

    PubMed  Google Scholar 

  20. Carafoli, E., andCrompton, M. 1978. The regulation of intracellular calcium. Pages 151–216,in:Bronner, F., andKleinzeller, A. (eds.), Current Topics in Membranes and Transport. Membrane Properties: Mechanical Aspects, Receptors, Energetics and Calcium Dependence of Transport. Vol. 10, Academic Press, New York.

    Google Scholar 

  21. Iqbal, Z., andOchs, S. 1978. Fast axoplasmic transport of a calcium-binding protein in mammalian nerve. J. Neurochem. 31:409–418.

    PubMed  Google Scholar 

  22. McGraw, C. F., Somlyo, A. V., andBlaustein, M. P. 1980. Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis. J. Cell Biol. 85:228–241.

    PubMed  Google Scholar 

  23. Theron, J. J., Meyer, B. J., Boekkooi, S., andLoots, J. M. 1975. Ultrastructural localisation of calcium in peripheral nerves of the rat. S. Afr. Med. J. 49:1795–1798.

    PubMed  Google Scholar 

  24. Henkart, M. P., Reese, T. S., andBrinley, F. J., Jr. 1978. Endoplasmic reticulum sequesters calcium in the squid giant axon. Science 202:1300–1303.

    PubMed  Google Scholar 

  25. Stoeckel, M. E., Hindelang-Gertner, C., Dellmann, H.-D., Porte, A., andStutinsky, F. 1975. Subcellular localization of calcium in the mouse hypophysis. I. Calcium distribution in the adeno- and neurohypophysis under normal conditions. Cell Tissue Res. 157:307–322.

    PubMed  Google Scholar 

  26. Duce, I. R., andKeen, P. 1978. Can neuronal smooth endoplasmic reticulum function as a calcium reservoir? Neuroscience 3:837–848.

    PubMed  Google Scholar 

  27. Klein, R. L., Yen, S.-S. andThureson-Klein, A. 1972. Critique of K-pyroantimonate method for semi-quantitative estimation of cations in conjunction with electron microscopy. J. Histochem. Cytochem. 20:65–78.

    PubMed  Google Scholar 

  28. Yarom, R., andChandler, J. A. 1973. Electron probe microanalysis of skeletal muscle. J. Histochem. Cytochem. 22:147–154.

    Google Scholar 

  29. Komnick, H. 1962. Elektronenmikroscopische lokalisation von Na+ und Cl in Zellen und Geweben. Protoplasma 55:414–418.

    Google Scholar 

  30. Simon, J. A. V., andSpicer, S. S. 1975. Selective subcellular localization of cations with variants of the potassium (pyro) antimonate technique. J. Histochem. Cytochem. 23:575–598.

    PubMed  Google Scholar 

  31. Wick, S. M., andHepler, P. K. 1980. Localization of Ca++-containing antimonate precipitates during mitosis. J. Cell Biol. 86:500–513.

    PubMed  Google Scholar 

  32. Wick, S. M., andHepler, P. K. 1982. Selective localization of intracellular Ca2+ with potassium antimonate. J. Histochem. Cytochem. 30:1190–1204.

    PubMed  Google Scholar 

  33. Van Iren, F., Van Essen-Joolen, L., Van der Duyn Schouten, P., Boers-Van der Sluijs, P., andde Bruijn, W. C. 1979. Sodium and calcium localization in cells and tissues by precipitation with antimonate: A quantitative study. Histochemistry 63:273–294.

    PubMed  Google Scholar 

  34. Atsumi, S., andDaimon, T. 1977. Localization of calcium-accumulating structures in the anterior byssal retractor muscle ofMytilus Edulis and their role in the regulation of active and catch contractions. J. Physiol. (London) 257:549–560.

    Google Scholar 

  35. Chan, S. Y., Ochs, S., andJersild, R. A., Jr. 1984. Localization of calcium in nerve fibers. J. Neurobiol. 15:89–108.

    PubMed  Google Scholar 

  36. Greenawalt, J. W., Rossi, C. S., andLehninger, A. L. 1964. Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria. J. Cell Biol. 23:21–38.

    PubMed  Google Scholar 

  37. Brierley, G. P., andSlautterback, D. B. 1964. Studies on ion transport IV. An electron microscope study of the accumulation of Ca2+ and inorganic phosphate by heart mitochondria. Biochim. Biophys. Acta 82:183–186.

    Google Scholar 

  38. Brinley, F. J., Jr. 1978. Calcium buffering in squid axons. Ann. Rev. Biophys. Bioeng. 7:363–392.

    Google Scholar 

  39. Nicholls, D. G., andCrompton, M. 1980. Mitochondrial calcium transport. FEBS Lett. 111:261–268.

    PubMed  Google Scholar 

  40. Landon, D. N., andLangley, O. K. 1971. The local chemical environment of nodes of Ranvier: A study of cation binding. J. Anat. 108:419–432.

    PubMed  Google Scholar 

  41. Landon, D. N., andHall, S. 1976. The myelinated nerve fibre. Chapter 1,in Landon, D. N. (ed.), The Peripheral Nerve. John Wiley and Sons New York.

    Google Scholar 

  42. Waxman, S. G. 1978. Variations in axonal morphology and their functional significance. Pages 169–190,in Waxman, S. G. (ed.), Physiology and Pathobiology of Axons. Raven Press, New York.

    Google Scholar 

  43. Chandler, J. A. 1977. X-ray microanalysis in the electron microscope. Pages 315–547,in Glauert, A. M. (ed.), Practical Methods in Electron Microscopy. Volume 5, North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  44. Hayat, M. A. (eds.) 1980. X-ray Microanalysis in Biology. University Park Press, Baltimore.

    Google Scholar 

  45. Jersild, R. A., Jr., andOchs, S. 1982. Variations in cation content of pyroantimonate precipitates within individual subcellular compartments determined by X-ray microanalysis. Anat. Rec. 202:89A.

    Google Scholar 

  46. Kerrick, W. G. L., Hoar, P. E., Malencik, D. A., Stamps, L., andFischer, E. H. 1979. Characterization of Ca2+- and Sr2+-activated tension in functionally skinned chicken fibers of normal and dystrophic skeletal and normal cardiac muscle. Pflugers Arch. 381:53–62.

    PubMed  Google Scholar 

  47. Hoar, P. E., andKerrick, W. G. L. 1979. Rabbit diaphragm: Two types of fibres determined by calcium strontium activation and protein content. J. Physiol. (London) 295:345–352.

    Google Scholar 

  48. Nagai, T., Takahashi, H., andTakauji, M. 1965. On the accumulation of divalent cations by skeletal muscle microsomes. Pages 169–176,in Ebashi, S., Oosawa, F., Sekine, T., andTonomura, Y. (eds.), Molecular Biology of Muscular Contraction. (B. B. A. Library Series), Igaku Shoin, Ltd., Tokyo and Elsevier, New York.

    Google Scholar 

  49. Somlyo, A. V., andSomlyo, A. P. 1971. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science 174:955–958.

    PubMed  Google Scholar 

  50. Greenawalt, J. W., andCarafoli, E. 1966. Electron microscope studies on the active accumulation of Sr++ by rat-liver mitochondria. J. Cell Biol. 29:37–61.

    PubMed  Google Scholar 

  51. Mellow, A. M. 1979. Equivalence of Ca2+ and Sr2+ in transmitter release from K+-depolarised nerve terminals. Nature 282:84–85.

    PubMed  Google Scholar 

  52. Ochs, S. 1982. Axoplasmic Transport and Its Relation to Other Nerve Functions. Wiley-Interscience, New York.

    Google Scholar 

  53. Cox, J. A., Malnoe, A., andStein, E. A. 1981. Regulation of brain cyclic nucleotide phosphodiesterase by calmodulin. A quantitative analysis. J. Biol. Chem. 256:3218–3222.

    PubMed  Google Scholar 

  54. Piascik, M. T., Wisler, P. L., Johnson, C. L., andPotter, J. D. 1980. Ca2+-dependent regulation of guineau pig brain adenylate cyclase. J. Biol. Chem. 255:4176–4181.

    PubMed  Google Scholar 

  55. Ochs, S., Jersild, R. A., Jr., Breen, T., andPeterson, R. 1983. Comparison of calcium and strontium sequestration in nerve axons in relation to axoplasmic transport. Soc. Neurosci. Abstr. 9:149.

    Google Scholar 

  56. DeWeer, P. 1976. Axoplasmic free magnesium levels and magnesium extrusion from squid giant axons. J. Gen. Physiol. 68:159–178.

    PubMed  Google Scholar 

  57. Kanje, M., Edström, A., andEkström, P. 1982. Divalent cations and fast axonal transport in chemically desheathed (Triton X-treated) frog sciatic nerve. Brain Res. 241:67–74.

    PubMed  Google Scholar 

  58. Smith, R. S. 1982. Axonal transport of optically detectable particulate organelles. Pages 181–192,in Weiss, D. G. (ed.), Axoplasmic Transport. Springer-Verlag, Heidelberg.

    Google Scholar 

  59. Forman, D. S. 1982. Saltatory organelle movement and the mechanism of fast axonal transport. pp. 234–240,in,Weiss,D. G. (ed.), Axoplasmic Transport. Springer-Verlag, Heidelberg.

    Google Scholar 

  60. Adams, R. D. 1982. Organelle movement in axons depends on ATP. Nature 297:327–329.

    PubMed  Google Scholar 

  61. Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. T., andGilbert, S. P. 1982. Fast axonal transport in squid giant axon. Science 218:1127–1129.

    PubMed  Google Scholar 

  62. Stearns, M. E. 1982. High voltage electron microscopy studies of axoplasmic transport in neurons: A possible regulatory role for divalent cations. J. Cell Biol. 92:765–776.

    PubMed  Google Scholar 

  63. Ochs, S., andRanish, N. 1970. Metabolic dependence of fast axoplasmic transport in nerve. Science 167:878–879.

    PubMed  Google Scholar 

  64. Adams, R. J., andBray, D. 1983. Rapid transport of foreign particles microinjected into crab axons. Nature 303:718–720.

    PubMed  Google Scholar 

  65. Sheetz, M. P., andSpudich, J. A. 1983. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303:31–35.

    PubMed  Google Scholar 

  66. Jacobs, M. 1982. Microfilament organization and cell movement. Trends in Neurosciences 5:369.

    Google Scholar 

  67. Byers, M. R. 1974. Structural correlates of rapid axonal transport: Evidence that microtubules may not be directly involved. Brain Res. 75:97–113.

    PubMed  Google Scholar 

  68. Brady, S. T., Chrothers, S. D., Nosal, C., andMcClure, W. O. 1980. Fast axonal transport in the presence of high Ca2+:evidence that microtubules are not required. Proc. Natl. Acad. Sci. USA 77:5909–5913.

    PubMed  Google Scholar 

  69. Ochs, S. 1981. III. Characterization of fast orthograde transport. Basic Parameters. Neurosci. Res. Prog. Bull. 20:19–31.

    Google Scholar 

  70. Ghetti, B., andOchs, S. 1978. On the relation between microtubule density and axoplasmic transport in nerves treated with maytansine in vitro. Pages 177–186,in Canal, N., andPozza, G. (eds.), Peripheral Neuropathies. (Developments in Neurology, Vol. 1), Elsevier, Amsterdam.

    Google Scholar 

  71. Ghetti, B., Alyea, C., Norton, J., andOchs, S. 1982. Effects of vinblastine on microtubule density in relation to axoplasmic transport. Pages 322–327,in Weiss, D. G. (Ed.), Axoplasmic Transport. Springer-Verlag, Heidelberg.

    Google Scholar 

  72. Imhof, B. A., Marti, U., Boller, K., Frank, H., andBirchmeier, W. 1983. Association between coated vesicles and microtubules. Exp. Cell Res. 145:199–207.

    PubMed  Google Scholar 

  73. Frixione, E. 1983. Firm structural associations between migratory pigment granules and microtubules in crayfish retinula cells. J. Cell Biol. 96:1258–1265.

    PubMed  Google Scholar 

  74. Allen, R. D., Allen, N. S., andTravis, J. L. 1981. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodal network of Allogromia laticollaris. Cell Motility 1:291–302.

    PubMed  Google Scholar 

  75. Hayden, J. H., Allen, R. D., andGoldman, R. D. 1983. Cytoplasmic Transport in Keratocytes: Direct visualization of particle translocation along microtubules. Cell Motility 3:1–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Henry McIlwain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochs, S., Jersild, R.A. Calcium localization in nerve fibers in relation to axoplasmic transport. Neurochem Res 9, 823–836 (1984). https://doi.org/10.1007/BF00965669

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965669

Keywords

Navigation