Skip to main content
Log in

Membrane-bound enzymes and their role in processing of the dynorphins and of the proenkephalin octapeptide Met-enkephalin-Arg-Gly-Leu

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Synaptosomal membrane (SPM) bound exo- and endopeptidases cleave the dynorphins and Met-enkephalin-Arg-Gly-Leu at several sites to produce shorter fragments; among these are dynorphin 1–8 from 1–17, and Met-enkephalin from Metenkephalin-Agr-Gly-Leu. the most vulnerable site is the Tyr-Gly bond cleaved by membrane-bound aminopeptidase(s), with the shorter peptides degraded more rapidly than the longer ones. A purified metalloendopeptidase sensitive to phosphoramidon inactivates the shorter peptide sequences at the Gly3-Phe4 bond, and the 1–13 and 1–17 sequences also at the Arg7-Ile8 bond. The kcat/Km ratios for purified metalloendopeptidase were 20–30 times higher for Leu-enkephalin and the proenkephalin octapeptide than for dynorphins 1–8, 1–13, and 1–17. Dynorphins 1–13 and 1–17 may serve as precursors for the widely distributed CNS neuropeptide dynorphin 1–8 since they were cleaved by a separate SPM endopeptidase insensitive to phosphoramidon. SPM monocarboxypeptidase converted dynorphin 1–13 to 1–12 (release of Lys) and dipeptidyl carboxypeptidase converted dynorphin 1–8 to 1–6; enkephalin octapeptide served as a precursor of Met-enkephalin by sequential action (release of Leu and Arg-Gly) of both carboxypeptidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marks, N. 1978. Biotransformation and degradation of corticotropins, lipotropins and hypothalamic peptides. Pages 329–377,in Ganong, W. F. andMartini, L. (eds.), Frontiers in Neuroendocrinology, Raven Press, New York.

    Google Scholar 

  2. Kakidani, H., Furutani, Y., Takahashi, H., Noda, M., Morimoto, Y., Hirose, T., Asai, M., Inayama, S., Nakanishi, S., andNuma, S. 1982. Cloning and sequence analysis of cDNA for porcine-neo-endorphin/dynorphin precursor. Nature 298:245–249.

    PubMed  Google Scholar 

  3. Udenfriend, S., andKilpatrick, D. L. 1983. Biochemistry of the enkephalins and enkephalin-containing peptides. Arch. Biochem. Biophys. 221:309–323.

    PubMed  Google Scholar 

  4. Weber, E., Roth, K. A., Evans, C. J., Chang, J. K., andBarchas, J. D. 1982. Immunohistochemical localization of dynorphin (1–8) in hypothalamic magnocellular neurons: evidence for absence of proenkephalin. Life Sci. 31:1761–1764.

    PubMed  Google Scholar 

  5. Watson, S. J., Khachaturian, H., Akil, H., Coy, D. H., andGoldstein, A. 1982. Comparison of the distribution of dynorphin systems and enkephalin systems in brain. Science 218:1134–1136.

    PubMed  Google Scholar 

  6. Weber, E., Evans, C. J., andBarchas, J. D. 1982. Predominance of the amino-terminal octapeptide fragment of dynorphin in rat brain regions. Nature 299:77–79.

    PubMed  Google Scholar 

  7. Corbett, A. D., Paterson, S. J., McKnight, A. T., Magnan, J., andKosterlitz, H. W. 1982. Dynorphin1–8 and dynorphin1–9 are ligands for theK-subtype of opiate receptor. Nature 299:79–81.

    PubMed  Google Scholar 

  8. Benuck, M., Berg, M. J., andMarks, N. 1981. Met-enkephalin-Arg6-Phe7 metabolism: conversion to Met-enkephalin by brain and kidney dipeptidyl carboxypeptidases. Biochem. Biophys. Res. Commun. 99:630–636.

    PubMed  Google Scholar 

  9. Benuck, M., Berg, M. J., andMarks, N. 1982. Separate metabolic pathways for Leuenkephalin and Met-enkephalin-Arg6-Phe7 degradation by rat striatal synaptosomal membranes. Neurochem. Intl. 4:389–396.

    Google Scholar 

  10. Leslie, F. M., andGoldstein, A. 1982. Degradation of dynorphin (1–13) by membrane-bound rat brain enzymes. Neuropeptides 2:185–196.

    Google Scholar 

  11. Walker, J. M., Moises, H. S., Coy, D. H., Baldrighi, G., andAkil, H. 1982. Nonopiate effects of dynorphin and des-Tyr-dynorphin. Science 218:1136–1138.

    PubMed  Google Scholar 

  12. Benuck, M., Berg, M. J., andMarks, N. 1983. Metabolism of dynorphins by brain membrane preparations or purified metalloenzymes: Formation of dynorphin 1–8. J. Neurochem. 41:suppl., S82.

    Google Scholar 

  13. Benuck, M., andMarks, N. 1980. Characterization of a distinct membrane bound dipeptidyl carboxypeptidase inactivating enkephalin in brain. Biochem. Biophys. Res. Commun. 95:822–828.

    PubMed  Google Scholar 

  14. Benuck, M., Berg, M. J., andMarks, N. 1982. Rat brain and kidney metalloendopeptidase: Enkephalin heptapeptide conversion to form a cardioactive neuropeptide, Phe-Met-Arg-Phe-amide. Biochem. Biophys. Res. Commun. 107:1123–1129.

    PubMed  Google Scholar 

  15. Lewis, R. V. 1979. A low cost gradient programmer. Analyt. Biochem. 98:142–145.

    PubMed  Google Scholar 

  16. Marks, N., Grynbaum, A., andNeidle, A. 1977. On the degradation of enkephalins and endorphins by rat and mouse brain extracts. Biochem. Biophys. Res. Commun. 74:1552–1559.

    PubMed  Google Scholar 

  17. Benuck, M., andMarks, N. 1978. Inhibition of brain angiotensin-1 converting enzyme by Bothrops jararaca nonapeptide (SQ 20881) and a prolyl analog (SQ 14225). J. Neurochem. 30:1653–1655.

    PubMed  Google Scholar 

  18. Weber, K., andOsborne, M. 1975. Proteins and sodium dodecyl sulfate molecular weight determinations on polyacrylamide gels and related procedures. Pages 179–223,in Neurath, H. (ed.), The Proteins, Vol. 1, 3rd edition, Academic Press, New York.

    Google Scholar 

  19. Matsas, R., Fulcher, I. A., Kenny, A. J., andTurner, A. J. 1983. Substance P and [Leu]enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc. Natl. Acad. Sci. USA 80:3111–3115.

    PubMed  Google Scholar 

  20. Marks, N., andBenuck, M. 1983. Metalloenzymes and cleavage of the Gly3-Phe4 bond of enkephalins: Comparison of purified enzymes with membranes and effect of MK-421 and thiorphan. Pages 67–81,in Ehrenpreis, S., andSicuteri, F. (eds.), Degradation of endogenous opioids: Its relevance to human pathology and therapy. Raven Press, New York.

    Google Scholar 

  21. Reith, M. E. A., andNeidle, A. 1981. Breakdown and fate of ACTH and MSH. Pharmacol. Ther. 12:449–461.

    PubMed  Google Scholar 

  22. Austen, B. M., Evans, C. J., andSmyth, D. G. 1979. Susceptibility of neuroactive peptides to aminopeptidase digestion is related to molecular size. Biochem. Biophys. Res. Commun. 91:1211–1217.

    PubMed  Google Scholar 

  23. Hersh, L. B., Smith, T. E., andMcKelvy, J. F. 1980. Cleavage of endorphins to des-Tyr endorphins by homogeneous bovine brain aminopeptidase. Nature 286:160–162.

    PubMed  Google Scholar 

  24. Schnebli, H. P., Phillips, M. A., andBarclay, R. K. 1979. Isolation and characterization of an enkephalin degrading aminopeptidase from rat brain. Biochem. Biophys. Acta 569:89–98.

    PubMed  Google Scholar 

  25. Hayashi, M. 1978. Monkey brain arylamidase II. Further characterization and studies on mode of hydrolysis of physiologically active peptides. J. Biochem. 84:1363–1372.

    PubMed  Google Scholar 

  26. Wagner, G. W., Tavianini, M. A., Herrmann, K. M. andDixon, J. C. 1981. Purification and characterization of an enkephalin aminopeptidase from rat brain. Biochemistry 20:3884–3990.

    PubMed  Google Scholar 

  27. Hersh, L. B. 1981. Solubilization and characterization of two rat brain membrane-bound aminopeptidases active on Met-enkephalin. Biochemistry 20:2345–2350.

    PubMed  Google Scholar 

  28. Marks, N., Benuck, M., Berg, M. J., andSachs, L. 1982. Metabolism of enkephalin analogues and surrogates having enhanced pharmacologic activities. Ann. N.Y. Acad. Sci. 398:308–326.

    PubMed  Google Scholar 

  29. Hui, K.-S., Wang, Y.-J., andLajtha, A. 1983. Purification and characterization of an enkephalin aminopeptidase from rat brain membranes. Biochemistry 22:1062–1067.

    PubMed  Google Scholar 

  30. Kerr, M. A., andKenny, A. J. 1974. The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem. J. 137:477–488.

    PubMed  Google Scholar 

  31. Orlowski, M., andWilk, S. 1981. Purification and specificity of a membrane-bound metalloendopeptidase from bovine pituitaries. Biochemistry 20:4942–4950.

    PubMed  Google Scholar 

  32. Almenoff, J., andOrlowski, M. 1983. Membrane-bound kidney neutral metalloendopeptidase: Interaction with synthetic substrates, natural peptides, and inhibitors. Biochemistry 22:590–599.

    PubMed  Google Scholar 

  33. Koida, M., Ano, J., Takenaga, K., Yoshimoto, T., Kimura, T. andSakakibara, S. 1979. A novel enzyme in rat brain converting-endorphin into methionine enkephalin: affinity-chromatography and specificity. J. Neurochem. 33:1233–1237.

    PubMed  Google Scholar 

  34. Orlowski, M., andWilk, S. 1981. A multicatalytical protease complex from pituitary that forms enkephalin and enkephalin containing peptides. Biochem. Biophys. Res. Commun. 101:814–822.

    PubMed  Google Scholar 

  35. Knight, M., Plotkin, C., andTamminga, C. A. 1982. Brain endopeptidase generates enkephalin from striatal precursors. Peptides 3:461–468.

    PubMed  Google Scholar 

  36. Hook, V. Y. H., Eiden, L. E., andBrownstein, M. J. 1982. A carboxypeptidase processing enzyme for enkephalin precursors. Nature 295:341–342.

    PubMed  Google Scholar 

  37. Fricker, L. D., andSnyder, S. H. 1982. Enkephalin convertase: Purification and characterization of a specific enkephalin synthesizing carboxypeptidase localized to adrenal chromaffin granules. Proc. Natl. Acad. Sci. USA 79:3886–3890.

    PubMed  Google Scholar 

  38. Marks, N., Sachs, L., andStern, F. 1981. Conversion of Met-enkephalin-Arg6-Phe7 by a purified brain carboxypeptidase (cathepsin A). Peptides 2:159–164.

    PubMed  Google Scholar 

  39. Grynbaum, A., andMarks, N. 1976. Characterization of rat brain catheptic carboxypeptidase (cathepsin A) inactivating angiotensin II. J. Neurochem. 36:313–318.

    Google Scholar 

  40. McKnight, A. T., Corbett, A. D., andKosterlitz, H. W. 1983. Increase in potencies of opioid peptides after peptidase inhibition. Eur. J. Pharmacol. 86:393–402.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Henry McIlwain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benuck, M., Berg, M.J. & Marks, N. Membrane-bound enzymes and their role in processing of the dynorphins and of the proenkephalin octapeptide Met-enkephalin-Arg-Gly-Leu. Neurochem Res 9, 733–749 (1984). https://doi.org/10.1007/BF00965662

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965662

Keywords

Navigation