Skip to main content
Log in

Specific binding of the muscarinic antagonist [3H]quinuclidinyl benzilate is not associated with preganglionic motor neurons in the dorsal motor nucleus of the vagus

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present study evaluates the binding of [3H]quinuclidinyl benzilate, [3H]QNB, as a measure of cholinergic muscarinic binding in six areas of the rat medulla oblongata associated with the cranial nerves. In an experimental group, the right vagus nerve was severed in the neck in order to determine whether the specific muscarinic binding sites might be located on cells that contribute efferent fibers to the vagus nerve. The level of activity of choline acetyltransferase (ChAT) also was determined in the same six areas. Additional experiments utilizing the retrograde transport of toxic ricin, a 60,000 dalton agglutinin that acts as a potent ribosomal toxin, was carried out to further evaluate localization of specific muscarinic binding in the DMN after destruction of the preganglionic efferent cells. These results support the conclusion that specific binding of the muscarinic antagonist [3H]QNB observed in the DMN of the vagus of the rat is not associated with the large cells that contribute efferent fibers into the vagus nerve. We suggest that the specific cholinergic muscarinic binding is located on interneuronal cell surfaces, on afferent terminals of local circuit neurons, or on afferent terminals of long projection axons which arise from neurons in the brainstem, hypothalamus, or forebrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robbins, S. L., andCotran, R. S. 1979. Pathologic Basis of Disease, W. B. Saunders Co., Philadelphia.

    Google Scholar 

  2. Boru, G. W., Adams, R. D., Braunwald, E., Isselbacher, K. J., andPetersdorf, R. G. (eds.) 1977 Harrison's Principles of Internal Medicine, eighth edition, McGraw-Hill Book Co., New York.

    Google Scholar 

  3. Noyes, Jr., R., Clancy, J., Hoenk, P. R., andSlymen, D. J. 1980. The prognosis of anxiety neurosis. Arch. Gen. Psych. 37: 173–178.

    Google Scholar 

  4. Feldman, E. J., Elachoff, J. D., Sandoff, I. M., andGrossman, M. I. 1980. Psychologic stress and duodenal ulcer. New Engl. J. Med. 302: 1206.

    Google Scholar 

  5. Torvik, A. 1956. Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures. An experimental study in the rat. J. Comp. Neurol. 106: 51–132.

    PubMed  Google Scholar 

  6. Hall, R. E., andCornish, K. 1977. Role of the orbital cortex in cardiac dysfunction in unanesthetized monkey. Exp. Neurol. 56: 289–297.

    PubMed  Google Scholar 

  7. Thomas, M. R., andCalaresu, F. R. 1974. Medullary sites involved in hypothalamic inhibition of reflex vagal bradycardia in the cat. Brain Res. 80: 1–16.

    PubMed  Google Scholar 

  8. Kito, G., Kase, Y., Miyata, T., andTakahama, K. 1977. Neural mechanism of production of spasmodic expiratory response like cough inducted by amygdala stimulation in the cat. I. Pathways from the amygdala to the lower brain stem. Arch. Int. Pharmacodyn 2129: 116–128.

    Google Scholar 

  9. Saper, C. B., Lowey, A. D., Swanson, L. W., andCowan, W. M. 1976. Direct hypothalamo-autonomic connections. Brain Res. 117: 305–312.

    PubMed  Google Scholar 

  10. Hopkins, D. A., andHolstege, G. 1978. Amygdaloid projections to the mesencephhalon, pons and medulla oblongata in the cat. Exp. Brain Res. 32: 529–547.

    PubMed  Google Scholar 

  11. Post, S., andMai, J. K. 1980. Contribution to the amygdaloid projection field in the rat. A quantitative autoradiographic study. Journal für Hirnforschung 21: 199–225.

    Google Scholar 

  12. Swanson, L. W. 1977. Immunohistochemical evidence for a neurophysin containing autonomic pathway arising in the paraventricular nucleus in the hypothalamus. Brain Res. 128: 346–353.

    PubMed  Google Scholar 

  13. Price, J. L., andAmaral, D. G. 1981. An autographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci. 1: 1242–1259.

    PubMed  Google Scholar 

  14. Beckstead, R. M., Morse, J. R., andNorgren, R. 1980. The nucleus of the solitary tract in the monkey: Projections to the thalamus and brain stem nuclei. J. Comp. Neurol. 190: 259–282.

    PubMed  Google Scholar 

  15. Kalia, M., andMesulam, M. M. 1980. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. Cervical vagus and nodose ganglion. J. Comp. Neurol. 193: 435–465.

    PubMed  Google Scholar 

  16. Rea, M. A., Aprison, M. H., andFelten, D. L. 1982. Catecholamines and serotonin in the caudal medulla of the rat: combined neurochemical-histofluorescence study. Brain Res. Bull., 9: 227–236.

    PubMed  Google Scholar 

  17. Siemers, E. R., Rea, M. A., Felten, D. L., andAprison, M. H. 1982. Distribution and uptake of glycine, glutamate and γ-aminobutyric acid in the vagal nuclei and eight other regions of the rat medulla oblongata. Neurochem. Res. 7: 449–462.

    Google Scholar 

  18. Simon, J. R., Odefeld-Nowak, B., Felten, D. L., andAprison, M. H. 1981. Distribution of choline acetyltransferase, acetylcholinesterase, muscarinic binding, and choline uptake in discrete areas of the rat medulla oblongata. Neurochem. Res. 6: 497–505.

    PubMed  Google Scholar 

  19. Rotter, A., Birdsall, N. J. M., Field, P. M., andRaisman, G. 1979. Muscarinic receptors in the central nervous system of the rat. II. Distribution of binding of [3H]propylbenzilycholine mustard in the midbrain and hindbrain. Brain Res. Revs. 1: 167–183.

    Google Scholar 

  20. Wamsley, J. K., Lewis, M. S., Young, III., S., andKuhar, M. J. 1981. Autoradiographic localization of muscarinic cholinergic receptors in rat brainstem. J. Neurosci. 1: 176–191.

    PubMed  Google Scholar 

  21. Burt, D. R. 1980. Basic receptor methods II. Problems of interpretation in binding studies,in 1980 Short Course Syllabus, Receptor Binding Techniques, Society for Neuroscience, Cincinnati, Ohio, Nov. 8–9, 1980.

    Google Scholar 

  22. Wiley, R. G., Blessing, W. W., andReis, D. J. 1981. Suicide transport of the toxic lectin, ricin. Society for Neuroscience, Abstracts, Vol. 7: 490.

    Google Scholar 

  23. Dennison, S. J., O'Connor, B. L., Aprison, M. H., Merrit, V. E., andFelten, D. L. 1981. Viscerotopic localization of preganglionic parasympathetic cell bodies of origin of the anterior and posterior subdiaphragmatic vagus nerves. J. Comp. Neurol. 197: 259–269.

    PubMed  Google Scholar 

  24. Geis, G. S., andWurster, R. D. 1980, Horseradish peroxidase localization of cardiac vagal preganglionic somata. Brain Res. 182: 19–30.

    PubMed  Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193: 265–275.

    PubMed  Google Scholar 

  26. Fonnum, F. 1969. Radiochemical microassays for the determination of choline acetyltransferase and acetylcholinesterase activities. Biochem. J. 115: 465–472.

    PubMed  Google Scholar 

  27. Karnovsky, M. J., andRoots, L. 1964. A “direct-coloring” thiocholine method for cholinesterases. J. Histochem. Cytochem. 12: 219–221.

    PubMed  Google Scholar 

  28. Winer, B. J. 1962. Statistical Principles in Experimental Design, McGraw-Hill Book Co., New York.

    Google Scholar 

  29. Rotter, A., Birdsall, N. J. M., Burgen, A. S. V., Field, P. M., andRaisman, G. 1977. Axotomy causes loss of muscarinic receptors and loss of synaptic contracts in the hypoglosal nucleus. Nature 266: 734–735.

    PubMed  Google Scholar 

  30. Kasa, P., Mann, S. P., Karcsu, S., Toth, L., andJordan, S. 1973. Transport of choline acetyltransferase and acetylcholinesterase in the rat sciatic nerve: A biochemical and electron histochemical study. J. Neurochem. 21: 431–436.

    PubMed  Google Scholar 

  31. Aldskogius, H. 1978. Fine structural changes in nerve cell bodies of the adult rabbit dorsal motor vagal nucleus during axon reaction. Neuropath. and Applied Neurobiol. 4: 323–341.

    Google Scholar 

  32. Aldskogius, H., Barron, K. D., andRegal, R. 1980. Axon reaction in dorsal motor vagal and hypoglossal neurons of the adult rat. Light microscopy and RNA-cytochemistry. J. Comp. Neurol. 193: 165–177.

    PubMed  Google Scholar 

  33. Hunt, S., andSchmidt, J. 1978. Some observations on the binding patterns of α-bungarotoxin in the central nervous system of the rat. Brain Res. 157: 213–232.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This issue is dedicated to Donald B. Tower.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodes, Z.I., Rea, M.A., Felten, D.L. et al. Specific binding of the muscarinic antagonist [3H]quinuclidinyl benzilate is not associated with preganglionic motor neurons in the dorsal motor nucleus of the vagus. Neurochem Res 8, 73–87 (1983). https://doi.org/10.1007/BF00965655

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965655

Keywords

Navigation