Skip to main content
Log in

NAD+-dependent formation ofγ-aminobutyrate (GABA) from glutamate

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mitochondria and nuclei of various tissues, including brain and liver, are capable of producingγ-aminobutyrate (GABA) fromL-glutamate, but poorly, if at all, fromD-glutamate. The amino nitrogen of glutamate is found in the reaction product. The enzymes responsible for GABA formation were solubilized from crude liver cell nuclei by Triton X-100. The reaction is NAD+ dependent Oxygen, FMN, Mg2+, and pyridoxalphosphate enhanced GABA formation. NADP+, coenzyme A, ornithine, 2-oxoglutarate, and aminooxyacetic acid, among others, inhibited the formation of GABA. On the basis of the available information the reaction sequence, is formulated tentatively as follows:

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seiler, N., Knodgen, B., andAskar, A. 1973. The formation ofγ-aminobutyrate in liver cell nuclei. Hoppe-Seyler's Z. Physiol. Chem. 354:467–470.

    Google Scholar 

  2. Benohr, H.C., Franz, W., andKrisch, K. 1966. Carboxylesterasen der Mikrosomenfraktion. Hydrolyse von Tributyrin Procain, und Phenocetin durch einige Organe und Lebermikrosomen verschiedener Tierarten. Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol. 255:163–177.

    Google Scholar 

  3. Blobel, G., andPotter, Van R. 1966. Nuclei from rat liver: Isolation method that combines purity with high yield Science 154:1662–1665.

    Google Scholar 

  4. Kato, T., andKurokawa, M. 1967. Isolation of cell nuclei from the mammalian cerebral cortex and their assortment on a morphological basis. J. Cell Biol. 32:649–662.

    Google Scholar 

  5. Umbreit, W.W., Burris, R.H., andStauffer, J.P. (eds.). 1964. Manometric Techniques, 4th ed., Burgess Publishing Co., Minneapolis, Minnesota.

    Google Scholar 

  6. Seiler, N. 1970. Use of the dansyl reaction in biochemical analysis. Methods Biochem. Anal. 18:259–337.

    Google Scholar 

  7. Seiler, N., andWiechmann, M. 1969. Zum Vorkommen derγ-Amino-buttersaure und derγ-Amino-β-hydroxybuttersaure in Tierischem Gewebe. Hoppe-Seyler's Z. Physiol. Chem. 350:1493–1500.

    Google Scholar 

  8. Seiler, N., andWiechmann, M. 1968. Die Bestimmung derγ-Amino buttersaure in 10−11-Mol-Bereich als I-Dimethylamino-naphthalin-5-sulfonyl-Derivat. Hoppe-Seyler's Z. Physiol. Chem. 349:588–594.

    Google Scholar 

  9. Seiler, N., andKnodgen, B. 1973. Quantitative mass spectrometry by internal standardization using a single focussing mass spectrometer and the peak switching facilities of a peak matching device. Org. Mass Spectrom. 7:97–105.

    Google Scholar 

  10. Bachelard, H.S. 1965. Glucose metabolism and α-keto-acids in rat brain and liver in vivo. Nature 205:905–904.

    Google Scholar 

  11. Fischer, F.G., andBohn, H. 1957. Uber die Bestimmung von Spermin, Spermidin und anderen biogenen Aminen nach papierelektrophoretischer Abtrennung und ihre Mengenverhaltnisse in tierischen Organen. Hoppe-Seylers Z. Physiol. Chem. 308:108–115.

    Google Scholar 

  12. Chiari, D., andRohr, M. 1967. Dunnschichtchramatographische Trennung von Ketocarbonsauren auf Zelluloseschichten. Microchim. Acta 1:140–142.

    Google Scholar 

  13. Ley, H., Roberts, E., andBaxter, C. 1966. Pages 490–504,in Lang, K., Lehnartz, E., Hoffman-Ostenhof, O., andSiebert, G. (eds.), Handbuch der Physiologischen und Pathologisch-Chemischen Analyse, Vol. 6B, Springer, Heidelberg and New York.

    Google Scholar 

  14. Singer, T.P., Bernath, P., andLusty, C.J. 1970. Pages 1573–1578,in Bergmeyer, H.U. (e.), Methoden der enzymatischen Analyse, Vol. 2, Verlag-Chemie, Weinheim.

    Google Scholar 

  15. Hartree, E.F. 1972. Determination of protein. A modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48:422–427.

    Google Scholar 

  16. Fleck, A., andMunro, H.N. 1962. The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochim. Biophys. Acta 55:571–583.

    Google Scholar 

  17. Munro, H.N., andFleck, A. 1966. Recent developments in the measurement of nucleic acids in biological materials. Analyst (London) 91:78–88.

    Google Scholar 

  18. Croft, D.N., andLubran, M. 1965. The estimation of deoxyribonucleic acid in the presence of sialic acid: Application to analysis of human gastric washings. Biochem. J. 95:612–620.

    Google Scholar 

  19. Wagner, G. 1975. Ph. D. thesis, University of Frankfurt, Germany.

  20. Roberts, E., andSimonsen, D.G. 1963. Some properties ofL-glutamic acid decarboxylase in mouse brain. Biochem. Pharmacol. 12: 113–134.

    Google Scholar 

  21. Salganicoff, L., andDe Robertis, E. 1963. Subcellular distribution of glutamic decarboxylase and gamma aminobutyric alpha-ketoglutaric transaminase. Life Sci. 2:85–91.

    Google Scholar 

  22. Balazs, R., Dahl, D., andHarwood, J.R. 1966. Subcellular distribution of enzymes of glutamate metabolism in rat brain. J. Neurochem. 13:897–905.

    Google Scholar 

  23. Haber, B., Kuriyama, K., andRoberts, E. 1970. An anion stimulatedL-glutamic acid decarboxylase in non-neural tissues: Occurrence and subcellular localization in mouse kidney and developing chick embryo brain. Biochem. Pharmacol. 19:1119–1136.

    Google Scholar 

  24. Haber, B., Kuriyama, K., andRoberts, E. 1970. Mitochondrial localization of a newL-glutamic acid decarboxylase in mouse and human brain. Brain Res. 22:105–112.

    Google Scholar 

  25. Lovtrup, S. 1961. The subcellular localization of glutamic decarboxylase in rat brain. J. Neurochem. 8:243–245.

    Google Scholar 

  26. Kuriyama, K., Haber, B., andRoberts, E. 1970. Occurrence of a newL-glutamic acid decarboxylase in several blood vessels of the rabbit. Brain Res. 23:121–123.

    Google Scholar 

  27. Drummond, R.J., andPhillips, A.T. 1974.L-Glutamic acid, decarboxylase in non-neural tissues of the mouse. J. Neurochem. 23:1207–1213.

    Google Scholar 

  28. MacDonnell, P., andGreengard, O. 1975. The distribution of glutamate decarboxylase in rat tissues; isotopic versus fluorimetric assays. J. Neurochem. 24:615–618.

    Google Scholar 

  29. Seiler, N., andAl-Therib, M.J. 1974. Putrescine catabolism in mammalian brain Biochem. J. 144:29–35.

    Google Scholar 

  30. Seiler, N., andEichentopf, B. 1975. 4-Aminobutyrate in mammalian putrescine catabolism. Biochem. J. 152:201–210.

    Google Scholar 

  31. Seiler, N., andKnodgen, B. 1971. Die Umwandlung von Glutamisaure, Putrescin und Ornithin in dieγ-Aminobuttersaure in Gehrin. Hoppe-Seyler's Z. Physiol. Chem. 352:97–105.

    Google Scholar 

  32. Seiler, N., Wiechmann, M., Fischer, H.A., andWerner, G. 1971. The incorporation of putrescine carbon intoγ-aminobutyric acid in rat liver and brain in vivo. Brain Res. 28:317–325.

    Google Scholar 

  33. Seiler, N., Al-Therib, M.J., andKataoka, K. 1973. Formation of GABA from putrescine in the brain of fish (Salmo irideus Gibb). J. Neurochem. 20:699–708.

    Google Scholar 

  34. Whelan, D.T., Scriver, C.R. andMohyuddin, F. 1969. Glutamic acid decarboxylase and gamma-aminobutyric acid in mammalian kidney. Nature 224:916–917.

    Google Scholar 

  35. Lancaster, G., Mohyuddin, F., Scriver, C.R., andWhelan, D.T. 1973. Aγ-aminobutyrate pathway in mammalian kidney cortex. Biochim. Biophys. Acta 297:229–240.

    Google Scholar 

  36. Gonnard, P., andWicker, A. 1974. Apropos de la glutamate décarboxylase mitochondriale cérébrale. Biochimie 56:1437–1438.

    Google Scholar 

  37. Miller, L. P., andMartin, D.L. 1973. Artifact in glutamate decarboxylase assay. Life Sci. 13:1023–1032.

    Google Scholar 

  38. Wu, J.-Y., andRoberts, E. 1974. Properties of brainL-glutamate decarboxylase. Inhibition studies. J. Neurochem. 23:759–767.

    Google Scholar 

  39. Di Prisco, G., Banay-Schwartz, M., andStrecker, H.J. 1968. Glutamate dehydrogenase in nuclear and mitochondrial fractions of rat liver. Biochem. Biophys. Res. Commun. 33:606–612.

    Google Scholar 

  40. Herzfeld, A. 1972. The distribution of glutamate dehydrogenase in rat tissue. Enzyme 13:246–251.

    Google Scholar 

  41. Herzfeld, A., Federmann, M., andGreengard, O. 1973. Subcellular morphometric and biochemical analyses of developing rat hepatocytes. J. Cell Biol. 57:475–483.

    Google Scholar 

  42. Frieden, C. 1959. Glutamic dehydrogenase III. The order of substrate addition in the enzymatic reaction. J. Biol. Chem. 234:2891–2896.

    Google Scholar 

  43. Olson, J.A., andAnfinsen, C.B. 1959. Kinetic and equilibrium studies on crystallineL-glutamic acid dehydrogenase. J. Biol. Chem. 202:841–856.

    Google Scholar 

  44. McKhann, G.M., andTower, D.B. 1959. Gamma-aminobutyric acid: A substance for oxidative metabolism in the cerebral cortex. Am. J. Physiol. 196:36–38.

    Google Scholar 

  45. Sacktor, B., andPacker, L. 1962. Reactions of the respiratory chain in brain mitochondrial preparations. J. Neurochem. 9:371–382.

    Google Scholar 

  46. Tsukada, Y., Nagata, Y., andTakagaki, G. 1957. Metabolism ofγ-aminobutyric acid in brain slices. Proc. Jpn. Acad. 33:510–514.

    Google Scholar 

  47. Bacila, M., Campello, A.P., Vianna, C.H.M., andVoss, D.O. 1964. The respiratory chain of rat cerebrum and cerebellum mitochondria: Respiration and oxidative phosphorylation. J. Neurochem. 11:231–242.

    Google Scholar 

  48. Balazs, R., Biesold, D., andMagyar, K. 1963. Some properties of rat brain mitochondrial preparations: Respiratory control. J. Neurochem. 10:685–708.

    Google Scholar 

  49. Buniatian, H.C., Movcessian, C.G., andUrgandjian, M.G. 1964. The effect ofγ-aminobutyric acid on oxidative phosphorylation of brain mitochondria., Pages 15–26,in Buniatian, H.C. (ed.), Problems in Brain Biochemistry, Academy of Science, Armenian SSR.

    Google Scholar 

  50. Roberts, E., andFrankel, S. 1951. Glutamic acid decarboxylase in brain. J. Biol. Chem. 188:789–795.

    Google Scholar 

  51. Weinstein, H., Roberts, E., andKakefuda, T. 1963. Studies of subcellular distribution ofγ-aminobutyric acid and glutamic acid decarboxylase in mouse brain. Biochem. Pharmacol. 12:503–509.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, N., Wagner, G. NAD+-dependent formation ofγ-aminobutyrate (GABA) from glutamate. Neurochem Res 1, 113–131 (1976). https://doi.org/10.1007/BF00965636

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965636

Keywords

Navigation