Advertisement

Neurochemical Research

, Volume 14, Issue 11, pp 1143–1147 | Cite as

Penicillin-induced convulsions have preferential effects on transmitter glutamate pools in rat neostriatum

  • Kjetil Furset
  • Bernt A. Engelsen
Original Articles

Abstract

Convulsant doses of penicillin and elevated ambient pressure of 41 bar enhance the excitability of neurons. Their effects have been studied in neostriatal tissue with methods allowing differentiation between transmitter and metabolic glutamate pools. Levels of glutamate (Glu), glutamine (Gln), aspartate (Asp); γ-aminobutyric acid and taurine were measured in the intact and decorticated neostriatum and parieto-occipital cortex of rats with a unilateral frontal cortex ablation. Intravenous infusion of penicillin at 1 bar decreased the neostriatal Glu content in the intact but not in the decorticated hemisphere. Pressure of 41 bar significantly decreased the level of Asp in the decorticated side only. Infusion of penicillin at 41 bar reduced the levels of Glu by 20.1% and Gln by 21.0% in the intact neostriatum only, whereas it decreased the Asp level in both sides as compared to control. The cortical Glu content was decreased only after infusion of penicillin at 41 bar. The results suggest that intravenous penicillin has a more pronounced effect on transmitter than on metabolic Glu pools in rat brain.

Key Words

Glutamate neostriatum neurotransmitter penicillin high pressure high pressure neurological syndrome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fonnum, F. 1984. Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42:1–11.Google Scholar
  2. 2.
    Fonnum, F., Storm-Mathisen, J., and Divac, I. 1981. Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neuroscience 6:863–873.Google Scholar
  3. 3.
    Hassler, R., Haug, P., Nitsch, C., Kim, J., and Paik, K. 1982. Effects of motor and premotor cortex ablation on concentration of amino acids, monoamines and acetylcholine and on the ultrastructure in rat neostriatum. A confirmation of glutamate as the specific cortico-striatal transmitter. J. Neurochem. 38:1087–1099.Google Scholar
  4. 4.
    Girault, J. A., Barbeito, L., Spampinato, U., Gozlan, H., Glowinsky, J., and Besseson, M. J. 1986. In vivo release of endogenous amino acids from rat striatum: further evidence for a role of glutamate and aspartate in corticostriatal neurotransmission: J. Neurochem. 47:98–106.Google Scholar
  5. 5.
    Fonnum, F., Paulsen, R. H., Fosse, V. M., and Engelsen, B., 1986. Symthesis and release of amino acid transmitters. Pages 285–293,in R. Schwarcz and Y. Ben-Ari (eds). Excitatory Amino Acids and Epilepsy. Plenum Press, New York.Google Scholar
  6. 6.
    Engelsen, B. 1986. Neurotransmitter glutamte: its clinical importance. Acta Neurol. Scand. 74:337–355.Google Scholar
  7. 7.
    Raichle, M. E., Kutt, H., Louis, S., and McDowell, F. 1971. Neurotoxicity of intravenously administrated penicillin G. Arch. Neurol. 25:232–237.Google Scholar
  8. 8.
    Conway, M. B., Beck, E., and Sommerville, J. 1968. Penicillin encephalopathy. Postgrad. Med. J. 44:891–897.Google Scholar
  9. 9.
    Van Gelder, N. M., Siatitsas, I., Menini, C., and Gloor, P. 1983. Feline generalized penicillin epilepsy: Changes of glutamic acid and taurine parallel the progressive increase in excitability of the cortex. Epilepsia 24:200–213.Google Scholar
  10. 10.
    Brauer, R. W., Wau, R. O., Jordan, M. R., and Parrish, D. E. 1971. Experimental studies on the high pressure hyperexcitability syndrome in various mammalian species. Pages 487–500,in C. J. Lambertsen (ed). Proc. 4th International Symposium on Underwater Physiology. Academic Press, New York.Google Scholar
  11. 11.
    Bennett, P. B., and Towse, E. J. 1971. The high pressure nervous syndrome during a simulated oxygen-helium dive to 1500 ft. Electroenchephalogr. Clin. Neurophysiol. 31:383–393.Google Scholar
  12. 12.
    Halsey, M. J. 1982. Effects of high pressure on the central nervous system. Physiol. Rev. 62:1341–1377.Google Scholar
  13. 13.
    Zinebi, F., Fagni, L., and Hugon, M. 1988. The influence of helium pressure on the reduction induced in field potentials by various amino acids and on the GABA-mediated inhibition in the CA1 region of hippocampal slices in the rat. Neuropharmacology 1:57–65.Google Scholar
  14. 14.
    Meldrum, B. S., Wardley-Smith, B., Halsey, M. J., and Rostain, J. C. 1983. 2-amino-7 phosphonoheptanoic acid protects against the high pressure neurological syndrome. Eur. J. Pharmacol. 87:501–506.Google Scholar
  15. 15.
    Wardley-Smith, B., and Meldrum, B. 1984. Effects of excitatory amino acid antagonists on the high pressure neurological syndrome in rats. Eur. J. Pharmacol. 105:351–354.Google Scholar
  16. 16.
    Holthaus, J. 1987. Appendicitis acuta at 200 m depth. Proceedings on diving and hyperbaric medicine, XIII th annual meeting, EUBS, Palermo, Italy: 67–68.Google Scholar
  17. 17.
    Furset, K., and Engelsen, B. 1988. High ambient pressure of 41 bar increases the cerebral toxicity of penicillins. Undersea Biomed. Res. 2:79–88.Google Scholar
  18. 18.
    Hordnes, C., and Tyssebotn, I. 1985. Effect of high ambient pressure and oxygen tension on organ blood flow in conscious trained rats. Undersea Biomed. Res. 12:115–128.Google Scholar
  19. 19.
    Engelsen, B., Westerberg, E., Fonnum, F. and Wieloch, T. 1986. Effect of insulin-induced hypoglycemia on the concentrations of glutamate and related amino acid and energy metabolites in the intact and decorticated rat neostriatum. J. Neurochem. 47:1634–1641.Google Scholar
  20. 20.
    Ahashi, R., and Aprison, M. H. 1964. Acetylcholine content of discrete of the brain obtained by a near-freezing method. J. Neurochem. 11:887–898.Google Scholar
  21. 21.
    Lindroth, P., and Mopper, K. 1979. High performance liquid chromatographic determination of subpicomole amounts of amino acid by precolumn fluorescence derivatization with o-phthaldialdehyde. Analyt. Chem. 51:1667–1674.Google Scholar
  22. 22.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:256–275.Google Scholar
  23. 23.
    Gottesfeld, Z., and Elazar, Z. 1972. GABA and gluamate in different EEG stages of penicillin focus. Nature 240:478–479.Google Scholar
  24. 24.
    Pintille, C., Mison-Crighel, C., and Badiu, G. 1967. Convulsive effect elicited by topical application of penicillin on glutamate-glutamine system of brain. Nature 214:1131–1132.Google Scholar
  25. 25.
    Young, A. B., and Bradford, H. F. 1987. Excitatory amino acids neurotransmitter in the cortico-striate pathway: studies using in tracerebral microdialysis in vivo. J. Neurochem. 47:1399–1404.Google Scholar
  26. 26.
    Siesjö, B. K., 1978. Brain Energy Metabolism. John Wiley & Sons, Chichester.Google Scholar
  27. 27.
    Sandberg, M., Ward, H. K., and Bradford, H. F. 1985. Effect of cortico-striate pathway lesions on activities of enzymes involved in the synthesis and metabolism of amino acid neurotransmitters in the striatum. J. Neurochem. 44:42–47.Google Scholar
  28. 28.
    Engelsen, B. A., Fosse, V. M., and Fonnum, F. 1987. The acute effect of ammonium acetate on the levels of amino acids in the intact and decorticated rat neostriatum. J. Neurochem. 47: 741–744.Google Scholar
  29. 59.
    Risso, J., J., Dumas, C., Chaumont, A., Geneuil, P., Goyet, R., and Bruce, F. 1984. Effect d'une compression rapide en melange heliox (51 ata) sur concentrations cerebrales en acides amines chez la souris. Leur place parmi les differents systemes de neurotransmission. Rapport C.E.R.B. 84-19. (C.E.B.R. B.P. 610, 83800 Toulon Naval).Google Scholar
  30. 30.
    Chapman, A. G., Halsey, M. J., Hart, G. P., Luff, N. P., Meldrum, B. S., and Wardley-Smith, B. S. 1986. Regional amino acid concentration in the brains of rats exposed to hip pressure. J. Neurochem. 47:314–317.Google Scholar
  31. 31.
    Aanderud, L., and Bakke, O. M. 1985. Tissue distribution of penicillin during constant rate infusion in rats at 71 ATA. Undersea Biomed. Res. 12:53–58.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Kjetil Furset
    • 1
  • Bernt A. Engelsen
    • 2
  1. 1.Department of PhysiologyUniversity of BergenNorway
  2. 2.The Gade Institute, Department of PathologyUniversity of BergenBergenNorway

Personalised recommendations