Neurochemical Research

, Volume 14, Issue 11, pp 1129–1135 | Cite as

Manganese(II) dynamics and distribution in glial cells cultured from chick cerebral cortex

  • Frederick C. Wedler
  • Brenda W. Ley
  • Anne A. Grippo
Original Articles

Abstract

The kinetics of manganese(II) ion uptake and efflux have been investigated using tracer54Mn(II) with glial cells cultured from chick cerebral cortex in chemically defined medium. The initial velocity of Mn(II) uptake versus [Mn(II)] exhibit saturation, with an apparent S0.5≈18(±3) μM. Both the rate and extent of Mn(II) uptake are inhibited by Ca(II), either added externally or preloaded into the glial cells. Preloading of glia with Mn(II) also inhibits the rate of external54Mn(II) uptake. Zn(II) inhibits but Cu(II) activates Mn(II) uptake. Efflux of Mn(II) from preloaded cells occurs as a biphasic process, with rapid release of 30–40% of total cell Mn(II), then much slower release of the remainder. Permeabilization of cells with dextran sulfate also rapidly released ca. 30% of total cell Mn(II). High external Mn(II) enhanced both the rate and extent of Mn(II) efflux. CCCP, an uncoupler of oxidative phosphorylation, inhibited both Mn(II) uptake and efflux significantly, but addition of cyanide, ouabain, insulin, hydrocortisone, K+, or Nd(III) had no effect on either process. Taken together, these data suggest a model in which Mn(II) is brought across the plasma membrane by facilitated diffusion, binds to cytosolic protein sites, and is partitioned into the mitochondria by an active transport mechanism. The fact that the Mn(II) flux rates observed with cultured glia are much faster than those reported for overall uptake and efflux of brain Mn(II)in vivo suggests that the blood-brain barrier may play a significant role in determining these latter rates in whole animals.

Keywords

Manganese Hydrocortisone Cyanide Glial Cell Dextran 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Orent, E. R., and McCollum, E. V. 1931. Effects of deprivation of manganese in the rat. J. Biol. Chem. 92:651–678.Google Scholar
  2. 2.
    Metal Ions in Neurology and Psychiatry Pages 3–34, 49–68, 121–128,in Gabay, S., harris, J., and Ho, B. T., (eds.) Liss, New York, 1985.Google Scholar
  3. 3.
    Underwood, E. J. 1977. Trace Elements in Human and Animal Nutrition. 4th Edn. Pages 170–195, Academic Press, New York.Google Scholar
  4. 4.
    Manganese in Metabolism and Enzyme Function in Schramm, V. L., and Wedler, F. C., (eds.) Academic Press, New York, 1986.Google Scholar
  5. 5.
    Gianutsos, G., Seltzer, M. D., Saymeh, R., Wu, M. W., Michel, R. G. 1985. Brain manganese accumulation following systemic administration of different forms. Arch Toxicol. 57:272–275.Google Scholar
  6. 6.
    Bonilla, E., Levine, S., and DeSalazar, E. 1978. Intoxicacion cronica con manganeso. Acta Ciet. Venezolana. 29:332–337.Google Scholar
  7. 7.
    Mena, I., Marin, O., Fuenzalida, S., and Cotzias, G. C. 1967. Chronic manganese poisoning—clinical picture and manganese turnover. Neurology. 17:128–136.Google Scholar
  8. 8.
    Parenti, M., Flauto, C., Parati, E., Vescovi, A., and Groppetti, A. 1986. Manganese neuro-toxicity: effects of L-DOPA and pargyline treatments. Brain Research. 367:8–13.Google Scholar
  9. 9.
    Kristensson, K., Eriksson, H., Lundh, B., Plantin, L.-O., Wachtmeister, L., elAzazi, M., Morath, C., and Heilbrom, E. 1986. Effects of MnCl2 on the rat developing nervous system. Acta Pharmacol. et Toxicol. 59:345–348.Google Scholar
  10. 10.
    Hurley, L. S., Woolley, D. E., Rosenthal, F., and Timiras, P. S. 1963. Influence of manganese on susceptibility of rats to convulsions. Am. J. Physiol. 204:493–496.Google Scholar
  11. 11.
    Carl, G. F., Keen, C. L., Gallagher, B. B., Clegg, M. S., Littleton, W. H., Flannery, D. B., and Hurley, L. S. 1986. Association of low blood Mn concentrations with epilepsy. Neurology. 36:1584–1587.Google Scholar
  12. 12.
    Schramm, V. L. 1982. Metabolic regulation: could Mn2+ be involved? Trends Biochem. Sci. 7:369–371.Google Scholar
  13. 13.
    Williams, R. J. P. 1982. Free manganese (II) and iron (II) cations can act as intracellular cell controls. FEBS Lett. 140:3–10.Google Scholar
  14. 14.
    McCord, J. M., Boyle, J. A., Day, E. D., Rizollo, L. J., and Salin, M. L. 1977. Michaelson, A. M., McCord, J. M., & Fridovich, I., (eds.)in Superoxide and Superoxide Dismutases Page 129, Academic Press, New York.Google Scholar
  15. 15.
    Doherty, J. D., Salem, N., Lauter, C. J., and Trams, E. G. 1983. Mn2+-Stimulated ATPase in Rat Brain. Neurochem. Res. 8:493–499.Google Scholar
  16. 16.
    Wedler, F. C. and Toms, R. 1986. Interactions of Mn(II) with Mammalian Glutamine Synthetase. Pages 221–238,in Schramm, V. L., and Wedler, F. C., (eds.) Manganese in Metabolism and Enzyme Function Academic Press, New York.Google Scholar
  17. 17.
    Metabolic Compartmentation in the Brain (Balazs, R. and Cremer, J. E., eds.). Pages 167–184. MacMillan Press, London, 1973.Google Scholar
  18. 18.
    Norenberg, M., and Martinez-Hernandez, A. 1979. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Research. 161:303–310.Google Scholar
  19. 19.
    Walker, J. E. 1983. Glutamate, GABA, and CNS Disease: A Review. Neurochem. Res. 8:521–548.Google Scholar
  20. 20.
    Tholey, G., Ledig, M., Mandel, P., Sargentini, L., Frivold, A. H., Leroy, M., Grippo, A. A., and Wedler, F. C. 1987. Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex. Neurochem. Res. 12:45–50.Google Scholar
  21. 21.
    Schramm, V. L., and Brandt, M. 1986. The manganese(II) economy of rat hepatocytes. Fed. Proc. 45:2817–2820.Google Scholar
  22. 22.
    Stein, W. D. Transport and Diffusion across Cell Membranes, Academic Press, New York, 1986.Google Scholar
  23. 23.
    Tholey, G., Ledig, M., Kopp, P., Sargentini-Maier, L., Leroy, M., Grippo, A. A., and Wedler, F. C. 1988. Levels and subcellular distribution of physiologically important metal ions in neuronal cells cultured from chick embryo cerebral cortex. Neurochem. Res. 13:1163–1167.Google Scholar
  24. 24.
    Schramm, V. L. 1985. Evaluation of Mn(II) in metabolic regulation: Analysis of proposed sites for regulation. Pages 1109–1132,in (Schramm, V. L., & Wedler, F. C., eds.) “Manganese in Metabolism and Enzyme Function” Academic Press, New York.Google Scholar
  25. 25.
    Sensenbrenner, M. 1977. Dissociated brain cells in primary culture, Pages 191–213,in Federoff, S. and Hertz, L., (eds.) Cell, Tissue and Organ Culture in Neurobiology, Academic Press, New York.Google Scholar
  26. 26.
    Bottenstein, J. E., and Sato, G. H. 1979. Growth of a neuroblastoma cell line in serum-free supplemented medium. Proc. Nat. Acad. Sci., USA. 76:514–517.Google Scholar
  27. 27.
    Kimelberg, H. K., and Frangakis, M. V. 1985. Furosemide- and bumetimide-sensitive ion transport and volume control in primary astrocyte cultures from rat brain. Brain Res. 361:125–134.Google Scholar
  28. 28.
    Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  29. 29.
    Allshire, A., and Saris, N.-E. L. 1986. Interaction of manganese with cellular calcium homeostasis. Pages 51–64,in Schramm, V. L., & Wedler, F. C., (eds.) Manganese in Metabolism and Enzyme Function Academic Press, New York.Google Scholar
  30. 30.
    Shamoo, A. E. 1986. Mn(II) and Ca(II) transport in mitochondria. Pages 65–80,in Schramm, V. L., and Wedler, F. C., (eds.) Manganese in Metabolism and Enzyme Function Academic Press, New York.Google Scholar
  31. 31.
    Brandt, M., and Schramm, V. L. 1986. Mammalian manganese metabolism and manganese uptake and distribution in rat hepatocytes. Pages 3–16,in Schramm, V. L., and Wedler, F. C., (eds.) Manganese in Metabolism and Enzyme Function Academic Press, New York.Google Scholar
  32. 32.
    Smyers-Verbeke, J., May, C., Drochmans, P. and Massart, D. L. 1977. The Determination of copper, zinc and manganese in subcellular rat liver fractions. Anal. Biochem. 83:746–753.Google Scholar
  33. 33.
    Konji, V., Montag, A., Sandri, G., Nordenbrand, K., and Ernster, L. 1985. Transport of calcium and manganese by mitochondria from rat liver, heart and brain. Biochimie. 67:1241–1250.Google Scholar
  34. 34.
    Sakurai, H., Nishida, M., Yoshimura, T., Takada, J., and Koyama, M. 1985. Partition of divalent and total Mn in organs and subcellular organelles of MnCl2-treated rats studied by esr and neutron activation analysis. Biochem. Biophys. Acta. 841:208–214.Google Scholar
  35. 35.
    Suzuki, H., and Wada, O. 1981. Role of liver lysosomes in uptake and biliary excretion of manganese in mice. Environmental Research 26:521–528.Google Scholar
  36. 36.
    Goldstein, G. W., and Betz, A. L. 1986. The blood-brain barrier. Scientific Amer. 255:74–83.Google Scholar
  37. 37.
    Betz, A. L. 1986. Transport of ions across the blood-brain barrier. Fed. Proc. 45:2050–2054.Google Scholar
  38. 38.
    Betz, A. L., Goldstein, G. W., and Katzman, R. 1989. Blood-Brain-Cerebrospinal Fluid Barriers, Pages 591–608,in Siegel, G. J., et al. (eds.) Basic Neurochemistry, 4th Ed. Raven Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Frederick C. Wedler
    • 1
  • Brenda W. Ley
    • 1
  • Anne A. Grippo
    • 1
  1. 1.Department of Molecular & Cell Biology, Biochemistry Program, Paul M. Althouse LaboratoryThe Pennsylvania State UniversityUniversity Park

Personalised recommendations