Neurochemical Research

, Volume 11, Issue 7, pp 1073–1082 | Cite as

The distribution of [3H]kainate binding sites in primate hippocampus is similar to the distribution of both Ca2+-sensitive and Ca2+-insensitive [3H]kainate binding sites in rat hippocampus

  • Daniel T. Monaghan
  • Long Nguyen
  • Carl W. Cotman
Original Articles


The distribution of [3H]kainate binding sites was determined by quantitative autoradiography in three vertebrate species: rat, monkey, and human. These animals displayed a similar pattern of binding site density in the hippocampus. Highest levels were found within the stratum lucidum and moderate levels in the inner portion of the dentate gyrus molecular layer. Although the distribution is similar, there is a lower density of binding sites in the stratum lucidum of primates than in rodents. Experiments using rat brain synaptic plasma membrane fractions indicated that inclusion of Ca2+ ions results in a selective reduction in binding at the high affinity sites. The Ca2+-inhibited and Ca2+-insensitive binding sites in the rat hippocampus exhibited a similar distribution. Together, these results suggest that in a variety of mammalian species kainate receptors exhibit similar regional distributions, and that the high anf loe affinity kainate binding sites also exhibit similar regional distributions.


Mammalian Species Membrane Fraction Molecular Layer Vertebrate Species Site Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beaumont, K., Maurin, Y., Reisine, T. D., Fields, J. Z., Spokes, E., Bird, E. D. andYamamura, H. I. 1979. Huntington's disease and its animal model: alterations in kainic acid binding. Life Sci. 24:809–806.Google Scholar
  2. 2.
    Berger, M. L., andBen-Ari, Y. 1983. Autoradiographic visualization of [3H]kainic acid receptor subtypes in the rat hippocampus. Neurosci. Lett. 39:237–242.Google Scholar
  3. 3.
    Berger, M. L., Tremblay, M., Nitecka, L., andBenAri, Y. 1984. Maturation of kainic acid seizure-brain damage syndrome in the rat. III. Postnatal development of kainic acid binding sites in the limbic system. Neurosci. 13:1905–1104.Google Scholar
  4. 4.
    Cotman, C. W., Foster, A. C., andLanthorn, T. 1981. An overview of glutamate as a neurotransmitter. Adv. Biochem. Psychopharmacol. 27:1–27.Google Scholar
  5. 5.
    Coyle, J. T. 1983. Neurotoxic action of kainic acid. J. Neurochem. 41:1–11.Google Scholar
  6. 6.
    Foster, A. C. andFagg, G. E. 1984. Acidic amino acid binding sites in mammalian neuronal membranes: Their characteristics and relationship to synaptic receptors. Brain Res. Rev. 7:103–164.Google Scholar
  7. 7.
    Foster, A. C., Mena, E. E., Fagg, G. E., andCotman, C. W. 1981. Glutamate and aspartate binding sites are enriched in synaptic junctions isolated from rat brain. J. Neurosci. 1:620–625.Google Scholar
  8. 8.
    Foster, A. C., Mena, E. E., Monaghan, D. T., andCotman, C. W. 1981. Synaptic localization of kainic acid binding sites. Nature 289:73–75.Google Scholar
  9. 9.
    Geddes, J., Monaghan, D. T., Cotman, C. W., Lott, I., Kim, R., Chiu, H. 1985. Plasticity of hippocampal circuitry in Alzheimer's disease. Science 230:1179–1181.Google Scholar
  10. 10.
    Henke, H., andCuenod, M. 1980. Specific [3H]kainic acid binding in the vertebrate CNS, in Littauer, U. Z., Dudai, Y., Silman, I., Teichberg, V. I., and Vogel, Z. (eds.), Neurotransmitters and Their Receptors. John Wiley and Sons Ltd.Google Scholar
  11. 11.
    London, E. D., andCoyle, J. T. 1979. Specific binding of [3H]kainic acid to receptor sites in rat brain. Molec. Pharmacol. 15:492–505.Google Scholar
  12. 12.
    London, E. D., Klemm, N., andCoyle, J. T. 1980. Phylogenetic distribution of [3H]kainic acid receptor binding sites in neuronal tissue. Brain Res. 192:463–476.Google Scholar
  13. 13.
    McLennan, H. 1981. On the nature of the receptors for various excitatory amino acids in the mammalian central nervous system. Adv. Biochem. Psychopharm. 27:253–262.Google Scholar
  14. 14.
    Monaghan, D. T., andCotman, C. W. 1982. Distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res. 252:91–100.Google Scholar
  15. 15.
    Monaghan, D. T., Holets, V. R., Toy, D. W., andCotman, C. W. 1983. Anatomical distributions of four pharmacologically distinctl-[3H]glutamate binding sites. Nature 306:176–179.Google Scholar
  16. 16.
    Monaghan, D. T., Yao, D., Nguyen, L., andCotman, C. W. 1985. Excitatory amino acid binding sites: Correspondence between autoradiographic and membrane fraction preparations. Soc. Neurosci. 11:110.Google Scholar
  17. 17.
    Nadler, J. V., Perry, B. W., andCotman, C. W. 1978. Intraventricular kainic acid preferentially destroys hippocampal pyramidial cells. Nature 271:676–677.Google Scholar
  18. 18.
    Olney, J. W., Fuller, T., andDeGubareff, T. 1979. Acute dendrotoxic changes in the hippocampus of kainic acid treated rats. Brain Res. 176:91–100.Google Scholar
  19. 19.
    Robertson, J. H., andDeadwyler, S. A. 1981. Kainic acid produces depolarization of CA3 pyramidal cells in the in vitro hippocampal slice. Brain Res. 221:117–127.Google Scholar
  20. 20.
    Schwob, J. E., Fuller, T., Price, J. L., andOlney, J. W. 1980. Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological study. Neurosci. 5:991–1014.Google Scholar
  21. 21.
    Tremblay, E., Represa, A., andBen-Ari, Y. 1985. Autoradiographic localization of kainic acid binding sites in the human hippocampus. Brain Res. 343:378–382.Google Scholar
  22. 22.
    Unnerstall, J. R., andWamsley, J. K. 1983. Autoradiographic localization of high-affinity [3H]kainic acid binding sites in the rat forebrain. Eur. J. Pharmacol. 86:361–371.Google Scholar
  23. 23.
    Walters, R. J., andBerns, M. W. 1981. Computer-enhanced videomicroscopy: digitally processed microscopic images can be produced in real time. Proc. Natl. Acad. Sci. U.S.A. 78:6927–6931.Google Scholar
  24. 24.
    Watkins, J. C. 1984. Excitatory amino acids and central synaptic transmission. Trends in Pharmacol. Sci. 84:373–376.Google Scholar
  25. 25.
    Watkins, J. C. andR. H. Evans 1981. Excitatory amino acid transmitters. Ann. Rev. Pharmacol. Toxicol. 21:165–204.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Daniel T. Monaghan
    • 1
  • Long Nguyen
    • 1
  • Carl W. Cotman
    • 1
  1. 1.Department of PsychobiologyUniversity of CaliforniaIrvine

Personalised recommendations