Skip to main content
Log in

The putative molecular mechanism(s) responsible for the enhanced inositol phosphate synthesis by excitatory amino acids: An overview

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sladeczek, F., Pin, J.-P., Récasens, M., Bockaert, J., and Weiss, S. 1985. Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317:717–719.

    Google Scholar 

  2. Nicoletti, F., Meek, J. L., Iadarola, M. J., Chuang, D. M., Roth, B. L., and Costa, E. 1986. Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem. 46:40–46.

    Google Scholar 

  3. Récasens, M., Mayat, E., and Guiramand, J. 1990. Excitatory amino acid receptor and phosphoinositide breakdown: facts and perspectives. Pages 103–175,in Osborne N. N. (ed.), Current Aspects of the Neurosciences, Vol. 3, McMillan Press, London.

    Google Scholar 

  4. Watkins, J. C. and Olverman, H. J. 1987. Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci. 10:265–272.

    Google Scholar 

  5. Watkins, J. C., Krogsgaard-Larsen, P., and Honoré, T. 1990. Structure activity relationships in the development of excitatory aminoacid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 11:25–33.

    Google Scholar 

  6. Sladeczek, F., Récasens, M., and Bockaert, J. 1988. A new mechanism for glutamate receptor action: phosphoinositide hydrolysis. Trends Neurosci. 11:545–549.

    Google Scholar 

  7. Sugiyama, H., Ito, I., and Hirono, C. 1987. A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325:531–533.

    Google Scholar 

  8. Récasens, M., Guiramand, J., Nourigat, A., Sassetti, I. and Devilliers, G. 1988. A new quisqualate receptor subtype (sAA2) responsible for the glutamate-induced inositol phosphate formation in rat brain synaptoneurosomes. Neurochem. Int. 13:463–467.

    Google Scholar 

  9. Schoepp, D. D., and Johnson, B. G. 1988. Excitatory amino acid agonist-antagonist interactions at 2-amino-4-phosphonobutyric acid-sensitive quisqualate receptors coupled to phosphoinositide hydrolysis in slices of rat hippocampus. J. Neurochem. 50:1605–1613.

    Google Scholar 

  10. Berridge, M. J., and Irvine, R. F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321.

    Google Scholar 

  11. Fischer, S. K., and Agranoff, B. W. 1987. Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem. 48:999–1016.

    Google Scholar 

  12. Chuang, D.-M. 1989. Neurotransmitter receptors and phosphoinositide turnover. Ann. Rev. Pharmacol. Toxicol. 29:71–110.

    Google Scholar 

  13. Gomperts, B. D. 1983. Involvement of guanine nucleotide binding protein in the gating of Ca2+ by receptors. Nature 306:64–66.

    Google Scholar 

  14. Litosh, I., and Fain, J. N. 1986. Regulation of phosphoinositide breakdown by guanine nucleotides. Life Sci. 39:187–194.

    Google Scholar 

  15. Birnbaumer, L. 1990. G proteins in signal transduction. Vol. 30, pages 675–705in George, R., Cho, A., Blaschke, T. (eds), Annu. Rev. Pharmacol. Toxicol.

  16. Katan, M., Kriz, R. W., Totty, N., Philp, R., Meldrum, E., Aldape, R. A., Knopf, J. L., and Parker, P. J. 1988. Determination of the primary structure of PLC-154 demonstrates diversity of phosphoinositide-specific phospholipase C activities. Cell 54:171–177.

    Google Scholar 

  17. Suh, P.-G., Ryu, S. H., Moon, K. H., Suh, H. W., and Rhee, S. G. 1988. Cloning and sequence of multiple forms of phospholipase C. Cell 54:161–169.

    Google Scholar 

  18. Meldrum, E., Katan, M. and Parker, P. 1989. A novel inositol-phospholipid-specific phospholipase C. Eur. J. Biochem. 182:673–677.

    Google Scholar 

  19. Guiramand, J., Nourigat, A., Sassetti, I., and Récasens M. 1989. K+ differentially affects the excitatory amino acids- and carbachol-elicited inositol phosphate formation in rat brain synaptoneurosomes. Neurosci. Lett. 98:222–228.

    Google Scholar 

  20. Gusovsky, F., McNeal, E. T., and Daly, J. W. 1987. Stimulation of phosphoinositide breakdown in brain synaptoneurosomes by agents that activate sodium influx: antagonism by tetrodotoxin, saxitoxin, and cadmium. Mol. Pharmacol. 32:479–487.

    Google Scholar 

  21. Campochiaro, P., Ferkany, J. W., and Coyle, J. T. 1985. Excitatory amino acid analogs evoke release of endogenous amino acids and acetylcholine from chick retina in vitro. Vision Res. 25:1375–1386.

    Google Scholar 

  22. Gallo, V., Suergiu, R., Giovannini, C., and Levi, G. 1987. Glutamate receptor subtypes in cultured cerebellar neurons: modulation of glutamate and aminobutyric acid release. J. Neurochem. 49:1801–1809.

    Google Scholar 

  23. Gallo, V., Suergiu, R., and Levi, G. 1987. Functional evaluation of glutamate receptor subtypes in cultured cerebellar neurones and astrocytes. Eur. J. Pharmacol. 138:293–297.

    Google Scholar 

  24. Pocock, J. M., Murphie, H. M., and Nicholls, D. G. 1988. Kainic acid inhibits the synaptosomal plasma membrane glutamate carrier and allows glutamate leakage from the cytoplasm but does not affect glutamate exocytosis. J. Neurochem. 50:745–751.

    Google Scholar 

  25. Young, A. M. J., Crowder, J. M., and Bradford, H. F. 1988. Potentiation by kainate of excitatory amino acid release in striatum: complementary in vivo and in vitro experiments. J. Neurochem. 50:337–345.

    Google Scholar 

  26. Jones, P. G., and Roberts, P. J. 1990. Ibotenate stimulates glutamate release from guinea pig cerebrocortical synaptosomes: inhibition by L-2-amino-4-phosphonobutyrate (L-AP4). Neurosci. Lett. 111:228–232.

    Google Scholar 

  27. Osborne, N. N. 1990. Stimulatory and inhibitory actions of excitatory amino acids on inositol phospholipid metabolism in rabbit retina. Evidence for a specific quisqualate receptor subtype associated with neurones. Exp. Eye Res. 50:397–405.

    Google Scholar 

  28. Nicoletti, F., Wroblewski, J. T., Novelli, A., Alho, H., Guidotti, A., and Costa, E. 1986. The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J. Neurosci. 6:1905–1911.

    Google Scholar 

  29. Récasens, M., and Guiramand, J. 1990. Excitatory amino acid receptors coupled to phosphoinositide metabolism: Characterization and possible role in physiology and physiopathology. Pages 244–254,in Lubec, G., and Rosenthal, G. (eds), Amino acids, chemistry, biology and medicine, Escom Press, Netherland.

    Google Scholar 

  30. Sugiyama, H., Ito, I., and Watanabe, M. 1989. Glutamate receptor subtypes may be classified into two major categories: a study on Xenopus oocytes injected with rat brain mRNA. Neuron, 3:129–132.

    Google Scholar 

  31. Récasens, M., Sassetti, I., Nourigat, A., Sladeczek, F., and Bockaert, J. 1987. Characterization of subtypes of excitatory amino acid receptors involved in the stimulation of inositol phosphate synthesis in rat brain synaptoneurosomes. Eur. J. Pharmacol. 141:87–93.

    Google Scholar 

  32. Doble, A., and Perrier, M. L. 1989. Pharmacology of excitatory amino acid receptors coupled to inositol phosphate metabolism in neonatal rat striatum. Neurochem. Int., 15:1–8.

    Google Scholar 

  33. Lehman, J., and Scatton, B. 1982. Characterization of the excitatory amino acid receptor-mediated release of [3H]acetylcholine from rat striatal slices. Brain Res. 252:77–89.

    Google Scholar 

  34. Roberts, P. J., and Anderson, S. D. 1979. Stimulatory effect of L-glutamate and related amino acids on [3H] dopamine release from rat striatum: an in vitro model for glutamate actions. J. Neurochem. 32:1539–1545.

    Google Scholar 

  35. Cheramy, A., Romo, R., Godeheu, G., Baruch, P., and Glowinski, J. 1986. In vivo presynaptic control of dopamine release in the cat caudate nucleus. II. Facilitatory or inhibitory influence of L-glutamate. Neuroscience 19:1081–1090.

    Google Scholar 

  36. Jones, S. M., Snell, L. D., and Johnson, K. D. 1987. Phencyclidine selectivity inhibits N-methyl-D-aspartate-induced hippocampal (3H)noradrenaline release. J. Pharmacol. Exp. Ther. 240:492–497.

    Google Scholar 

  37. Schmidt, C. J., and Taylor, V. L. 1988. Release of [3H]norepinephrine from rat hippocampal slices by N-methyl-D-aspartate: comparison of the inhibitory effect of Mg2+ and MK-801. Eur. J. Pharmacol. 156:111–120.

    Google Scholar 

  38. Ransom, R. W., and Deschesnes, N. L. 1988. NMDA-induced [3H]norepinephrine release is modulated by glycine. Eur. J. Pharmacol. 156:149–155.

    Google Scholar 

  39. Drejer, J., Honoré, T., and Schousboe, A. 1987. Excitatory amino acid-induced release of3H-GABA from cultured mouse cerebral cortex interneurons. J. Neurosci. 7:2910–2916.

    Google Scholar 

  40. Pin, J.-P., Van-Vliet, B. J., and Bockaert, J. 1988. NMDA-and kainate- evoked GABA release from striatal neurones differentiated in primary culture: differential blocking by phencyclidine. Neurosci. Lett. 87:87–92.

    Google Scholar 

  41. Weiss, S. 1988. Excitatory amino acid-evoked release of gamma-[3H]aminobutyric acid from striatal neurons in primary culture. J. Neurochem. 51:435–441.

    Google Scholar 

  42. Harris, K. M. and Miller, R. J. 1989. CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) antagonizes NMDA-evoked [3H]GABA release from cultured cortical neurons via an inhibitory action at the strychnine-insensitive glycine site. Brain Res. 489:185–189.

    Google Scholar 

  43. Butcher, S. P., Lazarewicz, J. W., and Hamberger, A. 1987. In vivo microdialysis studies on the effects of decortication and excitotoxic lesions on kainic acid-induced calcium fluxes, and endogenous amino acid release, in the rat striatum. J. Neurochem. 49:1355–1360.

    Google Scholar 

  44. Tapia-Arancibia, L., and Astier, H. 1989. Actions of excitatory amino acids on somatostatin release from cortical neurons in primary cultures. J. Neurochem. 53:1134–1141.

    Google Scholar 

  45. Yaksh, T. L., Furui, T., Kanawati, I. S., and Go, V. L. W. 1987. Release of cholecystokinin from rat cerebral cortex in vivo: role of GABA and glutamate receptor systems. Brain Res. 406:207–214.

    Google Scholar 

  46. Gay, V. L., and Plant, T. M. 1987. N-methyl-D,L-aspartate elicits hypothalamic gonadotropin-releasing hormone release in prepubertal male rhesus monkeys (Macaca mulatta). Endocrinology 120:2289–2296.

    Google Scholar 

  47. Godfrey, P. P., Wilkins, C. J., Tyler, W., and Watson, S. P. 1988. Stimulatory and inhibitory actions of excitatory amino acids on inositol phospholipid metabolism in rat cerebral cortex. Br. J. Pharmacol. 95:131–138.

    Google Scholar 

  48. Pearce, B., Albrecht, J., Morrow, C., and Murphy, S. 1986. Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux. Neurosci. Lett. 72:335–340.

    Google Scholar 

  49. Bennet, C. F., and Crooke, S. T. 1987. Purification and characterization of a phosphoinositide-specific phospholipase C from guinea pig uterus. J. Biol. Chem. 262:13789–13797.

    Google Scholar 

  50. Berridge, M. J. 1987. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56:159–193.

    Google Scholar 

  51. Katan, M., and Parker, P. J. 1987. Purification of phosphoinositide-specific phospholipase C from a particulate fraction of bovine brain. Eur. J. Biochem. 168:413–418.

    Google Scholar 

  52. Renard, D., Poggioli, J., Berthon, B., and Claret, M. 1987. How far does phospholipase C activity depend on the cell calcium concentration. Biochem. J. 243:391–398.

    Google Scholar 

  53. Nicoletti, F., Iadarola, M. J., Wroblewski, J. T., and Costa, E. 1986. Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: Developmental changes and interaction with alpha 1-adrenoceptors. Proc. Natl. Acad. Sci. USA 83:1931–1935.

    Google Scholar 

  54. Snell, L. D., and Johnson, K. M. 1988. Cycloleucine competitively antagonizes the strychnine-insensitive glycine receptor. Eur. J. Pharmacol. 151:165–166.

    Google Scholar 

  55. Fink, K., Göthert, M., Molderings, G., and Sclicker, E. 1989. N-methyl-D-aspartate (NMDA) receptor mediated stimulation of noradrenaline release, but not release of other neurotransmitters in the rat brain cortex: receptor location, characterization and desensitization. Naunyn-Schmiedeberg's Arch. Pharmacol. 339:514–521.

    Google Scholar 

  56. Nicoletti, F., Wroblewski, J. T., and Costa, E. 1987. Magnesium ions inhibit the stimulation of inositol phospholipid hydrolysis by endogenous excitatory amino acids in primary cultures of cerebellar granule cells. J. Neurochem. 48:967–973.

    Google Scholar 

  57. Nicoletti, F., and Canonico, P. L. 1989. Glycine potentiates the stimulation of inositol phospholipid hydrolysis by excitatory amino acids in primary cultures of cerebellar neurons. J. Neurochem. 53:724–727.

    Google Scholar 

  58. Ambrosini, A., and Meldolesi, J. 1989. Muscarinic and quisqualate receptor-induced phosphoinositide hydrolysis in primary cultures of striatal and hippocampal neurons. Evidence for differential mechanisms of activation. J. Neurochem. 53:825–833.

    Google Scholar 

  59. Katada, T., and Ui, M. 1982. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA 79:3129–3133.

    Google Scholar 

  60. Gilman, A. G. 1987. G proteins: transducers of receptor-generated signals. Ann. Rev. Biochem. 56:615–649.

    Google Scholar 

  61. Hulme, E. C., Birdsall, N. J. M., and Buckley, N. J. 1990. Muscarinic receptor subtypes. Pages 633–673,in George, R., Cho, A. K. and Blaschke, T. F. (eds) Annu. Rev. Pharmacol. Toxicol., California.

  62. Merritt, J. E., Taylor, C. W., Rubin, R. P., and Putney, J. W. 1986. Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem. J. 236:337–343.

    Google Scholar 

  63. Haslam, R. J., and Davidson, M. M. 1984. Receptor-induced diacylglycerol formation in permeabilized platelets: possible role for a GTP-binding protein. J. Receptor Res. 4:605–629.

    Google Scholar 

  64. Wood, S. F., Szuts, E. Z., and Fein, A. 1988. Inositol trisphosphate production in squid photoreceptors. Activation by light, aluminium fluoride and guanine nucleotides. J. Biol. Chem. 264:12970–12976.

    Google Scholar 

  65. Gonzales, R. A., and Crews, F. T. 1985. Guanine nucleotides stimulate production of inositol trisphosphate in rat cortical membranes. Biochem. J. 232:799–804.

    Google Scholar 

  66. Jope, R. S., Casebolt, T. L. and Johnson, G. V. W. 1987. Modulation of carbachol-stimulated inositol phospholipid hydrolysis in rat cerebral slices. Neurochem. Res. 12:693–700.

    Google Scholar 

  67. Litosh, I. 1987. Guanine nucleotide and NaF stimulation of phospholipase C activity in rat cerebral cortical membranes: studies on substrate specificity. Biochem. J. 244:35–40.

    Google Scholar 

  68. Gonzales, R. A., and Crews, F. T. 1988. Differential regulation of phosphoinositide phosphodiesterase activity in brain membranes by guanine nucleotides and calcium. J. Neurochem. 50:1522–1528.

    Google Scholar 

  69. Li, P. P., Chiu, A. S., and Warsh, J. J. 1989. Activation of phosphoinositide hydrolysis in rat cortical slices by guanine nucleotides and sodium fluoride. Neurochem. Int. 14:43–48.

    Google Scholar 

  70. Brass, L. F., Laposata, M., Banga, H. S., and Rittenhouse, S. E. 1986. Regulation of the phosphoinositide hydrolysis pathway in thrombin-stimulated platelets by a pertussis toxin-sensitive guanine nucleotide-binding protein. J. Biol Chem. 261:16838–16847.

    Google Scholar 

  71. Nakamura, T., and Ui, M. 1983. Suppression of passive cutaneous anaphylaxis by pertussis toxin, an islet-activating protein, as a result of inhibition of histamine release from mast cells. Biochem. Pharmacol., 32, 3435–3441.

    Google Scholar 

  72. Nakamura, T., and Ui, M. 1985. Simultaneous inhibitions of inositol phospholipid breakdown, arachidonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin. J. Biol. Chem. 260:3584–3593.

    Google Scholar 

  73. Roche, S., Bali, J.-P., and Magous, R. 1990. Involvement of a pertussis toxin-sensitive G protein in the action of gastrin on gastric parietal cells. Biochim. Biophys. Acta 1055:287–294.

    Google Scholar 

  74. Taylor, C. W., Blakeley, D. M., Corps, A. N., Berridge, M. J., and Brown, K. D. 1988. Effects of pertussis toxin on growth factor-stimulated inositol phosphate formation and DNA synthesis in Swiss 3T3 cells. Biochem. J. 249:917–920.

    Google Scholar 

  75. Lo, W. W. Y., and Hughes, J. 1987. Pertussis toxin distinguishes between muscarinic receptor-mediated inhibition of adenylate cyclase and stimulation of phosphoinositide hydrolysis in flow 9000 cells. FEBS Lett. 220:155–158.

    Google Scholar 

  76. Tajima, T., Tsuji, Y., Brown, J. H., and Pappano, A. J. 1987. Pertussis toxin-insensitive phosphoinositide hydrolysis, membrane depolarization, and positive inotropic effect of carbachol in chick atria. Circ. Res. 61:436–445.

    Google Scholar 

  77. Milligan, G., Davies, S.-A., Housley, M. D., and Wakelam, M. J. O. 1989. Identification of the pertussis and cholera toxin substrates in normal and N-ras transformed NIH3T3 fibroblasts and an assessment of their involvement in bombesin-stimulation of inositol phospholipid metabolism. Oncogene 4:659–663.

    Google Scholar 

  78. Guillon, G., Balestre, M.-N., Chouinard, L., and Gallo-Payet, N. 1990. Involvement of distinct G-proteins in the action of vasopressin on rat glomerulosa cell. Endocrinology 126:1699–1708.

    Google Scholar 

  79. Hepler, J. R., Jeffs, R. A., Huckle, W. R., Outlaw, H. E., Rhee, S. G., Earp, H. S., and Harden, T. K. 1990. Evidence that the epidermal growth factor receptor and non-tyrosine kinase hormone receptors stimulate phosphoinositide hydrolysis by independent pathways. Biochem. J. 270:337–344.

    Google Scholar 

  80. Nicoletti, F., Wroblewski, J. T., Fadda, E., and Costa, E. 1988. Pertussis toxin inhibits signal transduction at a specific metabotropic glutamate receptor in primary cultures of cerebellar granule cells. Neuropharmacology 27:551–556.

    Google Scholar 

  81. Oosawa, Y., and Yamagishi, S. 1989. Rat brain glutamate receptors activate chloride channels in Xenopus oocytes coupled by inositol trisphosphate and Ca2+. J. Physiol. 408:223–232.

    Google Scholar 

  82. Kawai, N., Saito, M., and Ohsako, S. 1988. Differential expression of glutamate receptors in Xenopus oocytes injected with messenger RNA from lobster muscle. Neurosci. Lett. 95:203–207.

    Google Scholar 

  83. Ascher, P., and Nowak, L. 1988. Quisqualate- and kainate-activated channels in mouse certral neurones in culture. J. Physiol. 399:227–245.

    Google Scholar 

  84. Gusovsky, F., Hollingsworth, E. B., and Daly, J. W. 1986. Regulation of phosphatidylinositol turnover in brain synaptoneurosomes: stimulatory effects of agents that enhance influx of sodium ions. Proc. Natl. Acad. Sci. USA 83:3003–3007.

    Google Scholar 

  85. Gusovsky, F., and Daly, J. W. 1988. Formation of inositol phosphates in synaptoneurosomes of guinea pig brain: stimulatory effects of receptor agonists, sodium channel agents and sodium and calcium ionophores. Neuropharmacology 27:95–105.

    Google Scholar 

  86. Gusovsky, F., Secunda, S. I., and Daly, J. W. 1989. Pyrethroids: involvement of sodium channels in effects on inositol phosphate formation in guinea pig synaptoneurosomes. Brain Res. 492:72–78.

    Google Scholar 

  87. Nishizawa, Y., Gusovsky, F., and Daly, J. W. 1988. Local anesthetics: Comparison of effects on batrachotoxin-elicited sodium flux and phosphoinositide breakdown in guinea pig cerebral cortical synaptoneurosomes. Mol. Pharmacol. 34:707–713.

    Google Scholar 

  88. Smith, C. C. T., Bowen, D. M., and Davison, A. N. 1983. The evoked release of endogenous amino acids from tissue prisms of human neocortex. Brain Res. 269:103–109.

    Google Scholar 

  89. Levi, G., Aloisi, F., Ciotti, M. T., and Gallo V. 1984. Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures. Brain Res. 290:77–86.

    Google Scholar 

  90. Récasens, M., Fagni, L., Baudry, M., and Lynch, G. 1984. Potassium and veratridine-stimulated L-[3H]cysteine sulfinate and L-[3H]glutamate release from rat brain slices. Neurochem. Int. 6:325–332.

    Google Scholar 

  91. Do K. Q., Herrling, P. L., Streit, P., Turski, W. A., and Cuenod, M. 1986. In vitro release and electrophysiological effects in situ of homocysteic acid, an endogenous N-methyl-(D)-aspartic acid agonist, in the mammalian striatum. J. Neurosci. 6:2226–2234.

    Google Scholar 

  92. Bledsoe, S. C., McLaren, J. D., and Meyer, J. R. 1989. Potassium-induced release of endogenous glutamate and two as yet unidentified substances from the lateral line of Xenopus laevis. Brain Res. 493:113–122.

    Google Scholar 

  93. McMahon, H. T., Barrie, A. P., Lowe, M., and Nicholls, D. G. 1989. Glutamate release from guinea pig synaptosomes: stimulation by reuptake-induced depolarization. J. Neurochem. 53:71–79.

    Google Scholar 

  94. Vollenweider, F. X., Cuénod, M., and Do, K. Q. 1990. Effect of climbing fiber deprivation on release of endogenous aspartate, glutamate, and homocysteate in slices of rat cerebellar hemispheres and vermis. J. Neurochem. 54:1533–1540.

    Google Scholar 

  95. Guiramand, J., Sassetti, I., and Récasens, M. 1989. Developmental changes in the chemosensitivity of rat brain synaptoneurosomes to excitatory amino acids, estimated by inositol phosphate formation. Int. J. Devl. Neuroscience 7:257–266.

    Google Scholar 

  96. Luini, A., Goldberg, O., and Teichberg, V. I. 1981. Distinct pharmacological properties of excitatory amino acid receptors in the rat striatum: study by Na+ efflux assay. Proc. Natl. Acad. Sci. (USA) 78:3250–3254.

    Google Scholar 

  97. Baudry, M., Kramer, K., Fagni, L., Récasens, M., and Lynch, G. 1983. Classification and properties of acidic amino acid receptors in Hippocampus. II Biochemical studies using a sodium flux assay. Mol. Pharmacol. 24:222–228.

    Google Scholar 

  98. Ascher, P., Bregestovski, P., and Nowak, L. 1988. N-methyl-D-aspartate-activated ion channels of mouse central neurones in magnesium-free solutions. J. Physiol. 399:207–226.

    Google Scholar 

  99. Mudrick L. A., and Heinemann, U. 1990. Quisqualate induced changes in extracellular sodium and calcium concentrations persists in the presence of NMDA and non-NMDA receptor antagonists in rat hippocampal slices. Neurosci. Lett. 116:172–178.

    Google Scholar 

  100. Mudrick, L. A., and Heinemann, U. 1990. Quisqualate induced changes in [Ca2+]o and [Na+]o persist in the combined presence of 2-APV, ketamine and CNQX. Neurochem. Int. 16 Suppl. 1, 96.

    Google Scholar 

  101. Honoré, T., Davies, S. N., Drejer, J., Fletcher, E. J., Jacobsen, P., Lodge, D., and Nielsen, F. E. 1988. Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241:701–703.

    Google Scholar 

  102. Renaud, J.-F., Kazazoglou, T., Lombet, A., Chicheportiche, R., Jaimovitch, E., Romey, G., and Lazdunski, M. 1983. The Na+ channel in mammalian cardiac cells. Two kinds of tetrodotoxin receptors in rat heart membranes. J. Biol. Chem. 258:8799–8805.

    Google Scholar 

  103. Bowers, C. W. A. 1985. A cadmium-sensitive, tetrodotoxine-resistant sodium channel in bullforg autonomic axons. Brain Res. 340:143–147.

    Google Scholar 

  104. Frelin, C., Cognard, C., Vigne, P., and Lazdunski, M. 1986. Tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ channels differ in their sensitivity to Cd2+ and Zn2+. Eur. J. Pharmacol. 122:245–250.

    Google Scholar 

  105. Nowak, L., Bregestovski, P., Ascher, P., Herbert, A., and Prochiantz, A. 1984. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465.

    Google Scholar 

  106. Ascher, P., and Nowak, L. 1986. Calcium pemeability of the channels activated by N-methyl-D-aspartate (NMDA) in mouse central neurones. J. Physiol. 377:43P

    Google Scholar 

  107. Ascher, P., and Nowak, L. 1988. The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J. Physiol. 399:247–266.

    Google Scholar 

  108. Nowycky, M. C., Fox, A. P., and Tsien, R. W. 1985. Three type of neuronal calcium channel with different calcium agonist sensitivity. Nature, 316:440–443.

    Google Scholar 

  109. Suszkiw, J. B., Murawsky, M. M., and Shi, M. 1989. Further characterization of phasic calcium influx in rat cerebrocortical synaptosomes: inferences regarding calcium channel type(s) in nerve endings. J. Neurochem. 52:1260–1269.

    Google Scholar 

  110. Récasens, M., and Guiramand, J. 1991. The quisqualate metabotropic receptor: characterization and putative role. Pages 195–215,in Meldrum B. (ed.), excitatory amino acid antagonists, Frontiers in Pharmacology and Therapeutics, Blackwell Scientific Publications, Oxford, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Lawrence Austin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Récasens, M., Guiramand, J. & Vignes, M. The putative molecular mechanism(s) responsible for the enhanced inositol phosphate synthesis by excitatory amino acids: An overview. Neurochem Res 16, 659–668 (1991). https://doi.org/10.1007/BF00965552

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965552

Keywords

Navigation