Skip to main content
Log in

Properties of receptors for neurotoxic phospholipases A2 in different tissues

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A radioiodinated derivative of OS2 (125I−OS2), a neurotoxic monochain phospholipase A2 isolated from taipan venom, was previously found to bind to a specific brain membrane receptor with very high affinity.125I−OS2 is now used to identify the properties of neurotoxic phospholipase receptors in other tissues. Heart, skeletal muscle, kidney, lung, liver, pancreas, and smooth muscle membranes also contain high-affinity binding sites for toxic phospholipases A2. In most tissues, two different types of receptor sites have been characterized for125I−OS2 with Kd1 and Kd2 values in the 1–5 pM and the 10–50 pM range respectively. Whereas all receptors are similar in the different tissues in terms of their affinity for125I−OS2, maximal binding site capacities were very different, varying from 1.4 pmol/mg of protein in brain to 0.01 pmol/mg of protein in pancreaas. In brain, heart, and skeletal muscle, receptor densities vary with in vivo development. Affinity labeling experiments have identified the subunit composition of OS2 receptors and indicated that these receptors do not have identical structures in the different tissues. Binding competition studies with OS2 and other toxic phospholipases showed tissue-dependent pharmacological profiles. All these results taken together suggest the existence of a family of receptors for neurotoxic phospholipases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PLA2 :

phospholipase A2

DSS:

suberic acid bis-N-hydroxysuccinimide ester

EDTA:

ethylenediaminetetraacetic acid

Hepes:

4-(2-hydroxyethyl)1-piperazine ethanesulfonic acid

SDS:

sodium dodecyl sulfate

OS1 :

Oxyuranus scutellatus scutellatus toxin 1

OS2 :

Oxyuranus scutellatus scutellatus toxin 2

References

  1. Strong, P. N. 1987. Presynaptic phospholipase A2 neurotoxins: relationship between biochemical and electrophysiological approaches to the mechanism of toxin action. Pages 534–549,in Dowdall, M. J., and Hawthorne, J. N. (eds.), Cellular and Molecular Basis of Cholinergic Function, Ellis Horwoods, Chichester, Sussex.

    Google Scholar 

  2. Gopalakrishnakone, P., Dempster, D. W., Hawgood, B. J., and Elder, H. Y., 1984. Cellular and mitochondrial changes induced in the structure of murine skeletal muscle by crotoxin, a neurotoxic phospholipase A2 complex. Toxicon 22:85–98.

    Google Scholar 

  3. Lee, C. Y., Ho, C. L., and Eaker, D. 1977. Cardiotoxin-like action of a basic phospholipase A2 isolated fromNaja nigricollis venom. Toxicon 15:355–357.

    Google Scholar 

  4. Verheij, H. M., Boffa, M. C., Rothen, C., Bryckaert, M. C., Verger, R., and De Haas, G. H. 1980. Correlation of enzymatic activity and anticoagulant properties of phospholipase A2. Eur. J. Biochem. 112:25–32.

    Google Scholar 

  5. Fletcher, J. E., Rapuano, B. E., Condrea, E., Yang, C. C., Ryan, M., and Rosenberg, P. 1980. Comparison of a relatively toxic phospholipase A2 fromHemachatus haemachatus venom. II. Pharmacological properties in relationship to enzymatic activity. Biochem. Pharmacol. 29:1565–1574.

    Google Scholar 

  6. Huang, H. C. 1984. Release of slow reacting substance from the guinea-pig lung by phospholipase A2 ofVipera russelli snake venom. Toxicon 22:359–372.

    Google Scholar 

  7. Condrea, E., Fletcher, J. E., Rapuano, B. E., Yang, C. C., and Rosenberg, P. 1981. Dissociation of enzymatic activity from lethality and pharmacological properties by carbamylation of lysines inNaja nigricollis andNaja naja atra snake venom phospholipase A2. Toxicon 19:705–720.

    Google Scholar 

  8. Vishwanath, B. S., Kini, R. M., and Gowda, T. V. 1985. Purification of an edema inducing phospholipase A2 fromVipera russelli venom and its interaction with aristolochic acid. Toxicoa 23:617.

    Google Scholar 

  9. Vishwanath, B. S., Kini, R. M., and Gowda, T. V. 1987. Characterization of three edema-inducing phospholipase A2 enzymes from Habu (Trimeresurus flavoridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon 25:501–515.

    Google Scholar 

  10. Dowdall, M. J., Fohlman, J. P., and Watts, A. 1979. Presynaptic action of snake venom neurotoxins on cholinergic systems. Pages 63–76,in Ceccarelli, B., and Clementi, F. (eds.), Advances in Cytopharmacology, Vol. 3, Raven Press, New York.

    Google Scholar 

  11. Rehm, H., and Betz, H. 1982. Binding of β-bungarotoxin to synaptic membrane fractions of chick brain. J. Biol. Chem. 257:10015–10022.

    Google Scholar 

  12. Othman, I. B., Spokes, J. W., and Dolly, J. O. 1982. Preparation of neurotoxin3H-β-bungarotoxin: demonstration of saturable binding to brain synapses and its inhibition by toxin I. Eur. J. Biochem. 128:267–276.

    Google Scholar 

  13. Petersen, M., Penner, R., Pierau, F. K., and Dryer, F. 1986. β-Bungarotoxin inhibits a non-inactivating potassium current in guineapig dorsal root ganglion neurones. Neurosci. Lett. 68:141–146.

    Google Scholar 

  14. Rehm, H., and Lazdunski, M., 1988. Existence of different populations of the dendrotoxin I binding protein associated with neuronal K+ channels. Biochem. Biophys. Res. Commun. 153:231–240.

    Google Scholar 

  15. Moczydlowski, E., Lucchesi, K., and Ravindran, A. 1988. An emerging pharmacology of peptide toxins targeted targeted against potassium channels. J. Membrane Biol. 105:95–111.

    Google Scholar 

  16. Dreyer, F., and Penner, R. 1987. The actions of presynaptic snake toxins on membrane currents of mouse motor nerve terminal. J. Physiol. London 386:455–463.

    Google Scholar 

  17. Rowan, E. G., and Harvey, A. L. 1988. Potassium channel blocking actions of β-bungarotoxin and related toxins on mouse and frog motor nerve terminals. Br. J. Pharmacol. 94:839–847.

    Google Scholar 

  18. Lambeau, G., Barhanin, J., Schweitz, H., Qar, J., and Lazdunski, M. 1989. Identification and properties of very high affinity brain membrane binding sites for a neurotoxic phospholipase from the taipan venom. J. Biol. Chem. 264:11503–11510.

    Google Scholar 

  19. Lambeau, G., Schmid-Alliana, A., Lazdunski, M., and Barhanin, J. 1990. Identification and purification of a very high affinity binding protein for toxic phospholipases A2 in skeletal muscle. J. Biol. Chem. 265:9526–9532.

    Google Scholar 

  20. Fohlman, J., Eaker, D., Karlsson, E., and Thesleff, S. 1976. Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the Australian snake taipan (Oxyuranus scutellatus scutellatus). Eur. J. Biochem. 63, 457–469.

    Google Scholar 

  21. Shipolini, R. A., Callewaert, G. L., Cottrell, R. C., Doonan, S., Vernon, C. A., and Banks, B. E. C. 1971. Phospholipase A from bee venom. Eur. J. Biochem. 20:459–468.

    Google Scholar 

  22. Praz, G. A., Kalban, P. A., Wollheim, C. B., Blondel, B., Strauss, A. J., and Renold, A. E. 1983. Regulation of immunoreactiveinsulin release from a rat cell line (RINm5F). Biochem. J. 210:345–352.

    Google Scholar 

  23. Baldwin, E., and Kayalar, C. 1986. Metalloendoprotease inhibitors that block fusion also prevent biochemical differentiation in L6 myoblasts. Proc. Natl. Acad. Sci. USA 83:8029–8033.

    Google Scholar 

  24. Kimes, B. W., and Brandt, B. L. 1976. Characterization of two putative smooth muscle cell lines from rat thoracic aorta. Exp. Cell Res. 8:349–366.

    Google Scholar 

  25. Slaughter, R. S., Sutko, J. L., and Reeves, J. P. 1983. Equilibrium calcium-calcium exchange in cardiac sarcolemmal vesicles. J. Biol. Chem. 258:3183–3190.

    Google Scholar 

  26. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  27. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    Google Scholar 

  28. Feldman, H. A. 1972. Mathematical theory of complex ligand-binding systems at equilibrium: some methods for parameter fiting. Anal. Biochem. 48:317–338.

    Google Scholar 

  29. Mourre, C., Bidard, J.-N., and Lazdunski. 1988. High affinity receptors for the bee venom MCD peptide. Quantitative autoradiographic localization at different stages of brain development and relationship with MCD neurotoxicity. Brain Res. 446:106–112.

    Google Scholar 

  30. Lombet, A., Kazazoglou, T., Delpont, E., Renaud, J.-F., and Lazdunski, M. 1983. Ontogenic appearance of Na+ channels characterized as high affinity binding sites for tetrodotoxin during development of the rat nervous and skeletal muscle systems. Biochem. Biophys. Res. Commun. 110:894–901.

    Google Scholar 

  31. Kazazoglou, T., Schmid, A., Renaud, J.-F. and Lazdunski, M. 1983. Ontogenic appearance of Ca2+ channels characterized as binding sites for nitrendipine during development of nervous, skeletal and cardiac muscle systems in the rat. FEBS Lett. 164:75–79.

    Google Scholar 

  32. Renaud, J.-F., Kazazoglou, T., Lombet, A., Chicheportiche, R., Jaimovich, E., Romey, G., and Lazdunski, M. 1983. The Na+ channel in mammalian cardiac cells. Two kinds of tetrodotoxin receptors in rat heart membranes. J. Biol. Chem. 258:8799–8805.

    Google Scholar 

  33. Schmid-Antomarchi, H., Renaud, J.-F., Romey, G., Hugues, M., Schmid, A., and Lazdunski, M. 1985. The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+ channel in mammalian skeletal muscle. Proc. Natl. Acad. Sci. USA 82:2188–2191.

    Google Scholar 

  34. Martin, S., Levey, B. A., and Levey, G. S. 1973. Development of the cardiac beta adrenergic receptor in fetal rat heart. Biochem. Biophys. Res. Commun. 54:949–954.

    Google Scholar 

  35. Kini, M. R., and Evans, H. J. 1989. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon 27:613–635.

    Google Scholar 

  36. Hugues, M., Romey, G., Duval, D., Vincent, J.-P.n and Lazdunski, M. 1982. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells. Voltage-clamp and biochemical characterization of the toxin receptor. Proc. Natl. Acad. Sci. USA 79:1308–1312.

    Google Scholar 

  37. Renaud, J.-F., Desnuelle, C., Schmid-Antomarchi, H., Hugues, M., Serratrice, G., and Lazdunski, M. 1986. Expression of apamin receptor in muscle of patients with myotonic muscular dystrophy. Nature 319:678–680.

    Google Scholar 

  38. Piomelli, D., and Greengard, P. 1990. Lipoxygenase metabolites of arachidonic acid in neuronal transmembrane signalling. Trends Pharmacol Sci. 11:367–373.

    Google Scholar 

  39. Shimizu, T., and Wolfe, L. S. 1990. Arachidonic acid cascade and signal transduction. J. Neurochem. 55:1–15.

    Google Scholar 

  40. Ono, T., Tojo, H., Kuramitsu, S., Kagamiyama, H., and Okamoto, M. 1988. Purification and characterization of a membrane associated phospholipase A2 from rat spleen. J. Biol. Chem. 263:5732–5738.

    Google Scholar 

  41. Kramer, R. M., Hession, C., Johansen, B., Hayes, G., McGray, P., Pingchang Chow, E., Tizard, R., and Pepinsky, R. B. 1989. Structure and properties of a human non pancreatic phospholipase A2. J. Biol. Chem. 264:5768–5775.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Lawrence Austin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambeau, G., Lazdunski, M. & Barhanin, J. Properties of receptors for neurotoxic phospholipases A2 in different tissues. Neurochem Res 16, 651–658 (1991). https://doi.org/10.1007/BF00965551

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965551

Key Words

Navigation