Skip to main content
Log in

Developmental changes in phosphorylation of MAP-2 and synapsin I in cytosol and taxol polymerised microtubules from chicken brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In cytosol, cyclic AMP stimulated phosphorylation of microtubule associated protein-2 (MAP-2) increased from 2 days to adult in proportion to the increase in the concentration of MAP-2. By contrast, the calmodulin stimulated phosphorylation of MAP-2 decreased in proportion to the decrease in the concentration of calmodulin stimulated protein kinase II (CMK II). Similarly, the cAMP stimulated phosphorylation of the site on synapsin I labeled by the cAMP stimulated protein kinase (PKA) changed little during development whereas the calcium/calmodulin stimulated phosphorylation of the CMK II site decreased dramatically in proportion to the decrease in the concentration of CMK II. The decrease in the concentration of CMK II which occurs in cytosol during synapse maturation was also observed in taxol polymerised microtubules and the effects of the change in the relative concentrations of CMK II and PKA on the phosphorylation of MAP-2 and synapsin I in this fraction were similar to that observed in the cytosol. These results are consistent with the hypothesis that the developmental changes in phosphorylation of endogenous substrates by PKA is controlled largely by changes in the concentration of those substrates, whereas the concentration of CMK II is limiting so that the developmental changes in the phosphorylation of endogenous substrates by CMK II are a function of the concentration of CMK II itself as well as the concentration of endogenous substrates. Some possible functional consequences of this during synapse maturation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama, T., Nishida, E., Ishida, J., Saji, N., Ogawara, H., Hoshi, M., Miyata, Y., and Sakai, H. 1986. Purified protein kinase C phosphorylates microtubules associated protein II. J. Biol. Chem. 261:15648–15651.

    Google Scholar 

  2. Burns, R. G. and Islam, K. 1982. Characterisation of the chick brain high molecular weight multiply phosphorylated microtubule associated protein. Eur. J. Biochem. 122:25–29.

    Google Scholar 

  3. Burns, R. G., Islam, K., and Chapman, R. 1984. The multiple phosphorylation of the microtubule associated protein MAP-2 controls the MAP-2: tubulin interaction. Eur. J. Biochem. 141:609–615.

    Google Scholar 

  4. Cleveland, D. W., Fischer, S. G., Kirschner, M. W. and Laemmli, U. K. 1977. Peptide mapping by limited protelysis in sodium dodecyl sulphate and analysis by gel electrophoresis. J. Biol. Chem. 252:1102–1106.

    Google Scholar 

  5. Czernik, A. J. Pang, D. T., and Greengard, P. 1987. Amino acid sequence surrounding the cyclic AMP dependent and calcium/calmodulin dependent phosphorylation sites in rat and bovine synapsin I. Proc. Natl. Acad. Sci. USA 84:7518–7522.

    Google Scholar 

  6. Diaz-Nido, J., Serrano, L., Hernandez, M. A., and Avila, J. 1990. Phosphorylation of microtubule proteins in rat brain at different developmental stages: comparison with that found in neuronal cultures. J. Neurochem. 54:211–222.

    Google Scholar 

  7. Dunkley, P. R., and Robinson, P. J. 1981. Calcium stimulated protein kinases from rat cerebral cortex inactivated by preincubation. Biochem. Biophys. Res. Commun. 102:1196–1202.

    Google Scholar 

  8. Goldenring, J. R., Vallano, M. L., and DeLorenzo, R. J. 1985. Phosphorylation of calmodulin-dependent and cyclic AMP-dependent kinases. J. Neurochem. 45:900–905.

    Google Scholar 

  9. Goelz, S. E., Nestler, E. J., and Greengard, P. 1985. Phylogenetic survey of proteins related to synapsin I and biochemical analysis of four such proteins from fish brain. J. Neurochem. 45:63–72.

    Google Scholar 

  10. Huttner, W. B., DiGennaro, L. J., and Greengard, P. 1981. Differential phosphorylation of multiple sites in purified protein I by cyclic AMP dependent and calcium dependent protein kinases. J. Biol. Chem. 256:1482–1488.

    Google Scholar 

  11. Kadowaki, T., Fujita-Yamaguchi, Y., Nishida, E., Takaku, F., Akiyama, T., Kathuria, S., Akanuma, Y., and Kasuga, M. 1985. Phosphorylation of tubulin and microtubule associated proteins by the purified insulin receptor kinase. J. Biol. Chem. 260:4016–4020.

    Google Scholar 

  12. Karr, T. L., White, H. D., and Purich, D. L. 1979. Characterisation of brain microtubule proteins prepared by selective removal of mitochondria and synaptosomal components. J. Biol. Chem. 254:6107–6111.

    Google Scholar 

  13. Koszka, C., Leichtfried, F. E., and Wiche, G. 1985. Identification and spacial arrangement of high molecular weight proteins (Mr 300,000–330,000) co-assembling with microtubules from a cultured cell line (rat glioma C6). Eur. J. Cell. Biol. 38:149–156.

    Google Scholar 

  14. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685.

    Google Scholar 

  15. Lai, Y., Nairn, A. C., and Greengard, P. 1986. Autophosphorylation reversibly regulates the calcium/calmodulin dependence of calcium/calmodulin dependent protein kinase II. Proc. Natl. Acad. Sci. USA 83:4253–4257.

    Google Scholar 

  16. Levine, H., and Sahyoun, N. E. 1988. Two types of brain calcium-dependent protein kinase II: morphological, biochemical and immunological properties. Brain Res. 439:47–55.

    Google Scholar 

  17. Llinas, R., McGuinness, T. L., Leonard, C. S., Sugimori, M. and Greengard, P. 1985. Intraterminal injection of synapsin I or calcium/calmodulin dependent kinase II alters neurotransmitter release at the squid giant synapse. Proc. Natl. Acad. Sci. USA 82:3035–3039.

    Google Scholar 

  18. Matus, A. 1988. Microtubule associated proteins: their potential role in determining neuronal morphology. Annu. Rev. Neurosci. 11:29–44.

    Google Scholar 

  19. Murthy, A. S. N., and Flavin, M. 1983. Microtubule assembly using the microtubule associated protein MAP-2 prepared in defined states of phosphorylation with protein kinase and phosphatase. Eur. J. Biochem. 137:37–46.

    Google Scholar 

  20. Olmstedt, J. B. 1986. Microtubule associated proteins. Annu. Rev. Cell Biol. 2:421–457.

    Google Scholar 

  21. Rostas, J. A. P. 1991. Molecular mechanisms of neuronal maturation: a model for synaptic plasticity. In: Neural and Behavioural Plasticity: The Use of the Domestic Chicken as a Model, ed. R. J. Andrew, Oxford University Press pp 177–211.

  22. Rostas, J. A. P., Brent, V., and Dunkley, P. R. 1987. The effect of calmodulin and autophosphorylation on the activity of calmodulin stimulated protein kinase II. Neurosci. Res. Comm. 1:3–8.

    Google Scholar 

  23. Rostas, J. A. P., Brent, V. A., and Guldner, F. H. 1984. The maturation of postsynaptic densities in chicken forebrain. Neurosci. Lett. 45:297–304.

    Google Scholar 

  24. Rostas, J. A. P., Brent, V., Seccombe, M., Weinberger, R. P., and Dunkley, P. R. 1989. Purification and characterisation of calmodulin stimulated protein kinase II from 2 day and adult chicken forebrain. J. Mol. Neurosci. 1:93–104.

    Google Scholar 

  25. Rostas, J. A. P., Guldner, F. H., and Dunkley, P. R. 1983. Maturation of postsynaptic densities in chicken forebrain. Pages 67–79. A. K. Kidman, J. K. Tomkins, N. A. Cooper and C. Morris (eds.) Molecular Pathology of Nerve and Muscle: Noxious Agents and Genetic Lesions. Humana Press, New Jersey.

    Google Scholar 

  26. Rostas, J. A. P., Shevenan, T. A., sinclair, C. M. and Jeffrey, P. L. 1981. Markers for synaptic maturation in the central nervous system, in: New Approaches to Nerve and Muscle Disorders (eds. A. D. Kidman, J. Tomkins and R. A. Westerman), Excerpta Medica, Amsterdam/Oxford pp 23–26.

    Google Scholar 

  27. Schulman, H. 1984. Phosphorylation of microtubel-associated proteins by a Ca2+/calmodulin-dependent protein kinase. J. Cell Biol. 99:11–19.

    Google Scholar 

  28. Selden, S. C., and Pollard, T. D. 1983. Phosphorylation of microtubule associated proteins regulates their interaction with actin filaments. J. Biol. Chem. 258:7064–7071.

    Google Scholar 

  29. Sloboda, R. D., Rudolph, S. A., Rosenbaum, J. L., and Greengard, P. 1975. Cyclic AMP dependent endogenous phosphorylation of a microtubule associated protein. Proc. Natl. Acad. Sci. USA 72:177–181.

    Google Scholar 

  30. Sorensen, R. G., and Babitch, J. A. 1984. Identification and comparison of protein I in chick and rat forebrain. J. Neurochem. 42:705–710.

    Google Scholar 

  31. Sudhof, T. C. Czernik, A. J., Kao, H-T., Takei, K., Johnston, P. A., Horiuchi, A., Kanazir, S. D., Wagner, M. A., Perin, M. S., De Camilli, P., and Greengard, P. 1989. Synapsins: Mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 245:1474–1480.

    Google Scholar 

  32. Theurkauf, W. E., and Vallee, R. V. 1983. Extensive cyclic AMP dependent and cyclic AMP independent phosphorylation of microtubule associated protein II. J. Biol. Chem. 258:7883–7886.

    Google Scholar 

  33. Vallano, M. L., Goldenring, J. R., Buchholz, T. M., Larson, R. E., and DeLorenzo, R. J. 1985. Separation of endogenous calmodulin-and cyclic AMP- dependent kinases from microtubule preparations. Proc. Natl. Acad. Sci. USA 82:3202–3206.

    Google Scholar 

  34. Viereck, C., Tucker, R. P., Binder, L. I., and Matus, A. 1988. Pylogenetic conservation of brain microtubule-associated proteins MAP-2 and Tau. Neuroscience 26:893–904.

    Google Scholar 

  35. Walaas, S. I., and Nairn, A. C. 1989. Multisite phosphorylation of microtubule associated protein II (MAP-2) in rat brain: peptide mapping distinguishes between cyclic AMP-, calcium/calmodulin-, and calcium/phospholipid regulated phosphorylation mechanisms. J. Mol. Neurosci. 1:117–127.

    Google Scholar 

  36. Weinberger, R. P., and Rostas, J. A. P. 1988a. Developmental changes in protein phosphorylation in chicken forebrain: I cyclic AMP stimulated phosphorylation. Dev. Brain Res. 43:249–257.

    Google Scholar 

  37. Weinberger, R. P., and Rostas, J. A. P. 1988b. Developmental changes in protein phosphorylation in chicken forebrain: II calmodulin stimulated phosphorylation. Dev. Brain Res. 43:259–272.

    Google Scholar 

  38. Weinberger, R. P., Brent, V. A. and Rostas, J. A. P. 1991. Identification of chicken synapsins and developmental change in the phosphorylation of synapsin I by cAMP and calmodulin stimulated protein kinases. Submitted.

  39. Wiche, G. 1985. High molecular weight microtubule associated proteins (MAPs): a ubiquitous family of cytoskeletal connecting links. Trends Biochem. Sci. 10:67–70.

    Google Scholar 

  40. Yamamoto, H., Fukunaga, K., Goto, S., Tanaka, E., and Miyamoto, E. 1985. Calcium/calmodulin dependent regulation of microtubule formation via phosphorylation of microtubule associated protein II, tau factor, and tubulin and comparison with cyclic AMP dependent phosphorylation. J. Neurochem. 44:759–768.

    Google Scholar 

  41. Yamamoto, H., Saitoh, Y., Fukunaga, K., Nishimura, H., and Miyamoto, E. 1988. Dephosphorylation of microtubule proteins by brain protein phosphatases I and IIA and its effect on microtubule assembly. J. Neurochem. 50:1614–1623.

    Google Scholar 

  42. Yamauchi, T., and Fujisawa, H. 1982. Phosphorylation of microtubule associated protein II by calmodulin dependent protein kinase (kinase II) which occurs only in the brain tissues. Biochem. Biophys. Res. Commun. 109:975–981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Lawrence Austin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koszka, C., Brent, V.A. & Rostas, J.A.P. Developmental changes in phosphorylation of MAP-2 and synapsin I in cytosol and taxol polymerised microtubules from chicken brain. Neurochem Res 16, 637–644 (1991). https://doi.org/10.1007/BF00965549

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965549

Key Words

Navigation