Neurochemical Research

, Volume 7, Issue 4, pp 423–436 | Cite as

Differential effects of metal ligands on synaptic membrane glutamate binding and uptake systems

  • Elias K. Michaelis
  • Renee M. Belieu
  • Robert D. Grubbs
  • Mary L. Michaelis
  • Hsuan H. Chang
Original Articles

Abstract

The high affinity, Na+-independentl-[3H]glutamate binding process in synaptic membranes and in the purified binding protein was shown to be inhibited to an almost equal extent by the metal ligands NaN3, KCN, ando-phenanthroline, and by 2,4,5-trihydroxyphenylalanine (6-OH DOPA). The high affinity, Na+-dependent glutamate transport activity in these membranes was almost totally insensitive to NaN3,o-phenanthroline, KCN, and 6-OH DOPA. These agents, especially 6-OH DOPA, may be useful tools in achieving a discrimination between putative physiologic receptors and uptake carrier sites forl-glutamate in synaptic membranes. The sensitivity of the glutamate binding sites to the effects of the metal ligands may be correlated to the presence of an iron-sulfur center in the purified glutamate binding protein. Some of the characteristics of this metallic center were explored by optical and paramagnetic resonance spectroscopic techniques and are described in this study.

Keywords

Glutamate Dopa Spectroscopic Technique Glutamate Transport Uptake System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michaelis, E. K. Michaelis, M. L., andBoyarsky, L. L. 1974. High affinity glutamate binding to brain synaptic membranes. Biochim. Biophys. ACTA 367:338–348.PubMedGoogle Scholar
  2. 2.
    Roberts, P. J. 1974. Glutamate receptors in the rat CNS. Nature 252:399–401.PubMedGoogle Scholar
  3. 3.
    Lunt, G. G. 1973. Hydrophobic proteins from locust (Shistocera gregaria) muscle with glutamate receptor properties. Comp. Gen. Pharmac. 4:75–79.Google Scholar
  4. 4.
    De Robertis, E., andFiszer DePlazas, S. 1976. Isolation of hydrophobic proteins binding amino acids. Stereoselectivity of the binding ofl-[14C]glutamate in cerebral cortex. J. Neurochem. 26:1237–1243.PubMedGoogle Scholar
  5. 5.
    Foster, A. C. andRoberts, P. J. 1978. High-affinityl-[3H]glutamate binding to postsynaptic receptor sites on rat cerebellar membranes. J. Neurochem. 31:1467–1477.PubMedGoogle Scholar
  6. 6.
    Kanner, B. I. and Sharon, U. 1978. Active transport ofl-glutamate by membrane vesicles isolated from rat brain. Biochem. 17:3949–3953.Google Scholar
  7. 7.
    Logan, W. J. andSnyder, S. H. 1972. High affinity uptake systems for glycine, glutamic acid and aspartic acids in synaptosomes of rat central nervous tissues. Brain Res. 42:413–431.PubMedGoogle Scholar
  8. 8.
    Michaelis, E. K. 1975. Partial purification and characterization of a glutamate binding membrane glycoprotein from rat brain. Biochem. Biophys. Res. Commun. 65:1004–1012.PubMedGoogle Scholar
  9. 9.
    Michaelis, E. K., Michaelis, M. L., Chang, H. H., Grubbs, R. D., andKuoner, D. R. 1981. Molecular characteristics of glutamate receptors in the mammalian brain. Molec. Cell. Biochem. 38:163–179.PubMedGoogle Scholar
  10. 10.
    Michaelis, E. K. 1979. The glutamate receptor-like protein of brain synaptic membranes is a metallo-protein. Biochem. Biophys. Res. Commun. 87:106–113.PubMedGoogle Scholar
  11. 11.
    Chang, H. H. andMichaelis, E. K. 1980. Effects ofl-glutamic acid on synaptosomal and synaptic membrane Na+ fluxes and (Na+-K+)-ATPase. J. Biol. Chem. 255:2411–2417.PubMedGoogle Scholar
  12. 12.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265–308.PubMedGoogle Scholar
  13. 13.
    Biziere, K., Thompson, H., andCoyle, J. T. 1980 Characterization of specific high-affinity binding sites forl-[3H]glutamic acid in rat brain membranes. Brain Res. 183:421–433.PubMedGoogle Scholar
  14. 14.
    Biscoe, T. J., Evans, R. H., Headley, P. M., Martin, M. R., andWatkins, J. C. 1976. Structure-activity relations of excitatory amino acids on frog and rat spinal neurons. Brit. J. Pharmac. 58:373–382.Google Scholar
  15. 15.
    Cornish-Bowden, A. 1976. Principles of enzyme kinetics, Pages 52–62, Butterworths, New York.Google Scholar
  16. 16.
    Kim, I. C., andBragg, P. D. 1971. Properties of nonheme iron in a cell envelope fraction fromEscherichia coli. J. Bacteriol., 107:664–670.PubMedGoogle Scholar
  17. 17.
    Crane, R. T., Sun, I. L. andCrane, F. L. 1975. Lipophilic chelator inhibition of electron transport inEscherichia coli. J. Bacteriol. 22:686–690.Google Scholar
  18. 18.
    Hall, D. O., Cammack, R., andRao, K. K. 1974. Non-haem iron proteins, Pages 279–334,in Jacobs, A. andWorwood, M. (eds.), Iron in biochemistry and medicine, Academic Press, New York.Google Scholar
  19. 19.
    Beinert, H. 1978. EPR Spectroscopy of components of the mitochondrial electrontransfer system, Pages 133–150,in Fleischer, S. andPacker, L. (eds.) Methods in enzymology, vol. 54, Academic Press, New York.Google Scholar
  20. 20.
    Crane, F. K., Mackellar, W. C., Morre, D. J., Ramasarma, T., Goldenberg, H., Gorebing, C., andLöw, H. 1980. Adriamycin affects plasma membrane redox functions. Biochem. Biophys. Res. Commun. 93:746–754.PubMedGoogle Scholar
  21. 21.
    Crane, F. K., andLöw, H. 1976. Hormone regulated redox function in plasma membranes. FEBS Lett. 68:157–159.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Elias K. Michaelis
    • 1
  • Renee M. Belieu
    • 1
  • Robert D. Grubbs
    • 1
  • Mary L. Michaelis
    • 1
  • Hsuan H. Chang
    • 1
  1. 1.Neurobiology Section Department of Human DevelopmentUniversity of KansasLawrence

Personalised recommendations