Advertisement

Neurochemical Research

, Volume 11, Issue 5, pp 671–685 | Cite as

Effect of chronic valproate treatment on folate-dependent methyl biosynthesis in the rat

  • G. F. Carl
Original Articles

Abstract

Folate deficency has been associated with chronic anticonvulsant therapy. Characterization of the effects of individual anticonvulsants has been undertaken. Chronic treatmennt of rats with sodium valproate caused a decrease in liver folate concentration with concomitant increases in brain and plasma folate concentrations. After several weeks, these trends were reversed and folate concentrations tended to normalize. Chronic valproate treatment affected the activities of folatedependent one-carbon enzymes: Serine hydroxymethyltransferase activity in liver was increased; methylenetetrahydrofolate reductase activity in both brain and liver was decreased; and methyltetrahydrofolate: homocysteine methyltransfrase activity in both brain and liver decreased initially but returned toward normal with continued treatment. Methionine adenosyltransferase activity in brain declined after several weeks of treatment but the concentration of S-adenosylmethionine in liver increased with chronic valproate treatment. These data are consistent with the hypothesis that the effects of anticonvulsants on folates are a consequence of the mechanism of action of the anticonvulsant.

Keywords

Folate Methionine Homocysteine Valproate Reductase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

SHMT

serine hydroxymethyltransferase

MAT

methiuonine adenosyltransferase

MHMT

methyltetrahydrofolate: homocysteine methyltransferase

MTR

methylenetetrahydrofolate reductase

AdoMet

S-adenosylmethionine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strachan, R. W., andHenderson, J. G. (1967). Dementia and folate deficiency. Quart. J. Med. 36:189–204.PubMedGoogle Scholar
  2. 2.
    Sapira, J., Tullis, S., andMullaly, R. (1975). Reversible dementia due to folate deficiency. South. Med. J. 68:776–778.PubMedGoogle Scholar
  3. 3.
    Shokvon, S. D., Carney, M. W. P., Chanarin, I., andReynolds, E. H. (1980). The neuropsychiatry of megaloblastic anaemia, Br. Med. J. 281:1–8.PubMedGoogle Scholar
  4. 4.
    Pincus, J. H., Reynolds, E. H., andGlazer, G. H., 1972. Subacute combined system degeneration with folate deficiency. J. Am. Med. Assoc. 221:496–497.Google Scholar
  5. 5.
    Melamed, E., Reches, A., andHershko, C. 1975. Reversible central nervous system dysfunction in folate deficiency. J. Neurol Sci. 25:93–98.PubMedGoogle Scholar
  6. 6.
    Manzoor, M., andRuncie, J., 1976. Folate responsive neuropathy: report of 10 cases. Br. Med. J. 1:1176–1178.PubMedGoogle Scholar
  7. 7.
    Botez, M. I., Cadotte, M., Beaulieu, R., Pichette, L. P., andPison, C., 1976. Neurologic disorders responsive to folic acid therapy. Can. Med. Assoc. J. 115:217–222.PubMedGoogle Scholar
  8. 8.
    Trimble, M. R., Corbett, J. A., andDonaldson, D., 1980. Folic acid and mental symptoms in children with epilepsy. J. Neurol. Neurosurg. Psychiatr. 43:1030–1034.PubMedGoogle Scholar
  9. 9.
    Reynolds, E. H., 1972. Diphenylhydantoin: hematologic aspects of toxicity Pages 247–262,in Woodbury, D. M., Penry, J. K., andSchmidt, R. P. (eds.), Antiepileptic Drugs, Raven Press, New York.Google Scholar
  10. 10.
    Mauguiere, R. 1979. Antifolate effects of anticonvulsant drugs in man and epileptogenic properties of folate derivatives in cat: a clinical and experimental approach. Pages 317–330,in Botez, M. I., andReynolds, E. H. (eds.) Folic Acid in Neurology, Psychiatry and Internal Medicine Raven Press, New York.Google Scholar
  11. 11.
    Smith, D. B., andCarl, G. F. 1982. Interaction between folates and carbamazepine or valproate in the rat. Neurology 32:965–969.PubMedGoogle Scholar
  12. 12.
    Carl, G. F., andSmith, D. B. 1983. Interaction of phenytoin and folate in the rat. Epilepsia 24:494–501.PubMedGoogle Scholar
  13. 13.
    Carl, G. F., andSmith, D. B. 1984. Effect of chronic phenybarbital treatment on folates and one-carbon enzymes in the rat. Biochem. Pharmacol., 33:3457–3463.PubMedGoogle Scholar
  14. 14.
    Carl, G. F., 1985. Effect of chronic primidone treatment on folate dependent one-carbon metabolism in the rat. Fed. Proc. 44:1108.Google Scholar
  15. 15.
    Carl, G. F., DeLoach, C., andPatterson, J. 1986. Chronic sodium valproate treatment in the rat: toxicity versus protection against seizures induced by Indoklon. Neurochem. International (in press).Google Scholar
  16. 16.
    Kochi, H., Hayasaka, K., Hiraga, G., andKikuchi, G. 1979. Reduction of the level of the glycine cleavage system in the rat liver resulting from administration of dipropylacetic acid: and experimental approach to hyperglycinemia. Arch. Biochem. Biophys. 198:589–597.PubMedGoogle Scholar
  17. 17.
    Mortensen, P. B., Kolvraa, S., andChristensen, E. 1980. Inhibition of the glycine cleavage system: hyperglycinemia and hyperglycinuria caused by valproic acid. Epilepsia 21:563–569.PubMedGoogle Scholar
  18. 18.
    Simlia, S., VonWendt, L., andLinaaa, S. I. 1980. Dipropylacetate and aminoaciduria. J. Neurol. Sci. 45:83–86.PubMedGoogle Scholar
  19. 19.
    Reynolds, E. H. 1973. Anticonvulsants, folic acid and epilepsy. Lancet i:1376–1378.Google Scholar
  20. 20.
    Noell, W. K., Magoss, M. S., Cohen, L. H., Moliant, J. F., andWalters, G. C. 1960. Cerebral effects of folic acid, pyrimidines, amino acids and their antimetabolites. EEG J. 12:238.Google Scholar
  21. 21.
    Hommes, O. R., andObbens, E. A. M. T. 1972. The epileptogenic action of Na-folate in the rat. J. Neurol. Sci. 16:271–281.PubMedGoogle Scholar
  22. 22.
    Spaans, F. 1970. No effect of folic acid supplement of CSF folate and serum vitamin B12 in patients on anticonvulsants. Epilepsia 11:403–411.PubMedGoogle Scholar
  23. 23.
    Houben, P. F. M., Hommes, O. R., andKnaven, P. J. H. 1971. Anticonvulsant drugs and folic acid in young mentally retarded epileptic patients. A study of serum folate, fit frequency and I. Q. Epilepsia 12:235–247.PubMedGoogle Scholar
  24. 24.
    Norris, J. W., andPratt, R. F. 1971. A controlled study of folic acid in epilepsy. Neurology 21:659–664.PubMedGoogle Scholar
  25. 25.
    Bowe, J. C., Cornish, E. J., andDawson, M. 1971. Evaluation of folic acid supplements in children taking phenytoin. Dev. Med. Child. Neurol. 13:343–354.PubMedGoogle Scholar
  26. 26.
    Mattson, R. H., Gallagher, B. B., Reynolds, G. H., andGlass, D. 1973. Folate therapy in epilepsy. Arch. Neurol. 29:78–81.PubMedGoogle Scholar
  27. 27.
    Carl, G. F., andSmith, D. B. 1983. The effect of chromic phenytoin treatment on tissue folate concentrations and on the activities of the methyl synthetic enzymes in the rat. J. Nutr. 113:2368–2374.PubMedGoogle Scholar
  28. 28.
    O'Dea, R. F., Viveros, O. H., andDiliberto, E. J., Jr. 1981. Protein carboxymethylation: Role in the regulation of cell functions. Biochem. Pharmacol. 30:1163–1168.PubMedGoogle Scholar
  29. 29.
    Hirata, F., andAxelrod, J. 1980. Phospholipid methylation and biological signal transmission. Science 209:1082–1090.PubMedGoogle Scholar
  30. 30.
    Taylor, R. T., andWeissbach, H. 1965. Radioactive assay for serine transhydroxymethylase. Anal. Biochem. 13:80–84.Google Scholar
  31. 31.
    Kutzbach, C., andStokstad, E. L. R. 1967. Feedback inhibition of methylenetetrahydrofolate reductase in rat liver by S-adenosylmethionine. Biochem. Biophys. Acta 139:217–220.PubMedGoogle Scholar
  32. 32.
    Clark, B. R., Ashe, H., Halpern, R. M., andSmith, R. A. 1974. A method of determination of methionine containing radioactivity in the thiomethyl moiety. Anal. Biochem. 61:243–247.PubMedGoogle Scholar
  33. 33.
    Matthysse, S., Baldessarini, R. J., andVogt, M. 1972. Methionine adenosyltransferase: A double-isotope derivative, enzymatic assay. Anal. Biochem. 48:410–421.PubMedGoogle Scholar
  34. 34.
    Yu, P. H., 1978. Radioenzymatic estimation of S-adenosylmethionine in rat brain regions and subcellular fractions. Anal. Biochem. 86:495–504.Google Scholar
  35. 35.
    Liau, M., C., Lin, G. W., andHurlbert, R. B. 1977. Partial purification and characterization of tumor and liver S-adenosylmethionine synthetases. Canc. Res. 37:427–435.Google Scholar
  36. 36.
    Carl, G. F., Benesh, F. C., andHudson, J. L. 1978. Effect of methionine-loading on methyl group synthesis and activation in rat brain and liver. Biol. Psychiatr. 13:661–669.Google Scholar
  37. 37.
    Kutzbach, C., andStokstad, E. L. R. 1971. Mammalian methylenetetrahydrofolate reductase: partial purification, properties and inhibition by S-adenosylmethionine. Biochem. Biophys. Acta 250:459–477.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • G. F. Carl
    • 1
    • 2
  1. 1.Research Service (151)VA Medical CenterAugusta
  2. 2.Departments of Neurology and Medicine (Nutrition)Medical College of GeorgiaAugusta

Personalised recommendations