Advertisement

Neurochemical Research

, Volume 11, Issue 5, pp 625–636 | Cite as

Genotypic differences in age and chronic alcohol exposure effects on somatostatin levels in hippocampus and striatum in mice

  • G. Fuhrmann
  • M. T. Strosser
  • F. Besnard
  • E. Kempf
  • J. Kempf
  • A. Ebel
Original Articles

Abstract

Somatostatin contents of striatum, hippocampus, and pons medulla have been followed in two inbred strains of mice (C57B1/6J and Balb/cJ) with aging and long term alcohol exposure (over a 25 month period of intoxication). Marked strain dependent differences in basic levels of somatostatin and genotypic variations in reactivity of this neuropeptide to aging processes and chronic alcohol exposure were demonstrated. The Balb/c strain exhibits a significant age dependent decrease in striatal and hippocampal somatostatin levels whereas the C57B1 mice remain unchanged until the 27 month. Moreover, only the Balb/c strain reacts to chronic alcohol exposure, showing a significant increase in somatostatin levels in those structures affected by the aging process. Such genotypic differences may be involved in man in specific pathologies in aged individuals and in alcohol induced behavioral alterations in alcoholics.

Keywords

Aging Process Genotypic Variation Inbred Strain Alcohol Exposure Genotypic Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beal, M. F., andMartin, J. B. 1984. The effect of somatostatin on striatal catecholamines. Neurosci. Lett. 44:271–276.PubMedGoogle Scholar
  2. 2.
    Besnard, F., Kempf, E., Fuhrmann, G., andEbel, A. Influence of mouse genotype on responses of central biogenic amines to alcohol intoxication and aging. Submitted.Google Scholar
  3. 3.
    Birren, J. E., Woods, A. M., andWilliams, M. V. 1979. Speed of behavior as an indicator of age changes and the integrity of the nervous system. Pages 10–44,in Hoffmeister F., andMuller, C. (eds), Brain Function in Old Age, Bayer Symposium VII, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  4. 4.
    Chesselet, M. F., andReisine, T. D. 1983. Somatostatin regulates dopamine release in rat striatal slices and cat caudate nuclei. J. Neurosci. 3:232–236.PubMedGoogle Scholar
  5. 5.
    Davies, P., andTerry, R. D. 1981. Cortical somatostatin-like immunoreactivity in cases of Alzheimer's disease and senile dementia of the Alzheimer type. Neurobiol. Aging 2:9–14.PubMedGoogle Scholar
  6. 6.
    Davis, K. L., Hollister, L. E., andBerger, P. A. 1970. Treatment of Huntington's disease and tardive dyskinesia with choline chloride, Pages 87–97,in Davis K. L. andBerger P. A. (eds), Brain Acetylcholine and Neuropsychiatric Disease, Plenum Press, New York.Google Scholar
  7. 7.
    Di Scala-Guenot, D., Strosser, M. T., andMialhe, P. 1984. Characterization of somatostatin in peripheral and portal plasma in the duck:in vivo metabolism of somatostatin-28 and -14. J. Endocrinol. 100:329–335.PubMedGoogle Scholar
  8. 8.
    Durkin, T. P., Hashem-Zadeh, H., Mandel, P., andEbel, A. 1981. A comparative study of the acute effects of ethanol on the cholinergic system in hippocampus and striatum of inbred mouse strains. J. Pharmacol. Exp. Ther. 220:203–208.Google Scholar
  9. 9.
    Durkin, T. P., Hashem-Zadeh, H., Mandel, P., Kempf, J., andEbel, A. 1983. Genotypic variation in the dopaminergic inhibitory control of striatal and hippocampal cholinergic activity in mice. Pharmacol. Biochem. Behav. 19:63–70.PubMedGoogle Scholar
  10. 10.
    Ebel, A., Hermetet, J. C., andMandel, P. 1973. Comparative study of acetylcholinesterase and choline acetyltransferase enzyme activities in brain of DBA and C57 mice. Nature New Biol. 242:56–57.PubMedGoogle Scholar
  11. 11.
    Friedman, M. B., Erickson, C. K., andLeslie, S. W. 1980. Effect of acute and chronic ethanol administration on whole mouse brain synaptosomal calcium influx. Biochem. Pharmacol. 29:1903–1908.PubMedGoogle Scholar
  12. 12.
    Fuhrmann, G., Di Scala-Guenot, D., Strosser, M. T., Kempf, E., Kempf, J., andEbel, A. 1984. Neuromodulatory effects of somatostatin on striatal and hippocampal cholinergic activity in mice—behavioural incidences. European Brain and Behaviour Society, Annual Meeting (2–5 septembre 1984), Strasbourg, France.Google Scholar
  13. 13.
    Hornykiewicz, O. 1983. Parkinson's disease and the aging basal ganglia, Pages 253–274,in Gispen W. H., andTraber, J. (eds), Aging of the Brain, Vol. 7, Elsevier Science Publisher, Amsterdam.Google Scholar
  14. 14.
    Isaacson, R. L., andHannigan, J. H. 1983. The hippocampus and age-related disorders. Pages 139–148,in Gipsen, W. H. andTraber, J. (eds), Aging of the Brain, vol. 7, Elsevier Science Publisher, Amsterdam.Google Scholar
  15. 15.
    Joynt, R. J., andMcNeill, T. H. 1984. Neuropeptides in aging and dementia. Peptides 5 (suppl. 1) 269–274.PubMedGoogle Scholar
  16. 16.
    Kempf, E., Fuhrmann, G., andEbel, A. 1985. Genotypic variations in ethanol effects on striatal and hippocampal transmitter interactions. Alcohol, 3:231–237.Google Scholar
  17. 17.
    Lee, C. M., andIversen, L. L. 1981 Release of somatostatin from extrahypothalamic rat brain slices: inhibition by dopamine and morphine. Brain Res. 219:355–361.PubMedGoogle Scholar
  18. 18.
    Lucchi, L., Covelli, V., Anthopoulou, M., Spano, P. F., andTrabucchi, M., 1983. Effect of chronic ethanol treatment on adenylate cyclase activity in rat striatum. Neurosci. Lett. 40:187–192.PubMedGoogle Scholar
  19. 19.
    Lyon, R. C., Comb, J. A., Schreurs, J., andGoldstein, D. B. 1981. A relationship between alcohol intoxication and the disordering of brain membranes by a serie of short-chain alcohols. J. Pharmacol. Exp. Ther. 218:669–675.PubMedGoogle Scholar
  20. 20.
    Muller, P., Britton, R. S., andSeeman, P. 1980. The effects of long-term ethanol on brain receptors for dopamine, acetylcholine, serotonin, and noradrenaline. Eur. J. Pharmacol. 65:31–37.PubMedGoogle Scholar
  21. 21.
    Nonaka, G., andKishimoto, Y. 1979. Levels of cerebrosides, sulfatides and galactosyl diglycerides in different regions of rat brain. Biochim. Biophys. Acta 572:432–441.PubMedGoogle Scholar
  22. 22.
    Rossor, M. N. 1982. Neurotransmitters and CNS disease: Dementia. The Lancet II, 1200–1204.Google Scholar
  23. 23.
    Samuel, D., Heron, D. S., Herschkowitz, M., andShinikky, M. 1982. Aging, receptor binding and membrane microviscosity. Pages 93–105,in Giacobini, E., Filogamo, G., Giacobini, G., andVernadakis, A. (eds.) The Aging Brain: Cellular and Molecular Mechanisms of Aging in the Nervous System, Raven Press, New York.Google Scholar
  24. 24.
    Sun, G. Y., andSamorajski, T. S. 1972. Age changes in the lipid composition of the whole homogenates and isolated myelin fraction of mouse brain. J. Gerontol. 27:10–12.PubMedGoogle Scholar
  25. 25.
    Tanaka, S., andTsujimoto, A. 1981. Somatostatin facilitates the serotonin release from rat cerebral cortex, hippocampus and hypothalamus slices. Brain Res. 208:219–222.PubMedGoogle Scholar
  26. 26.
    Trabucchi, M., Spano, P. F., Govoni, S., Riccardi, F., andBosio, A. 1982. Dopaminergic function during aging in rat brain. Pages 195–201,in Giacobini, E., Filogamo, G., Giacobini, G., andVernadakis, A. (eds), The Aging Brain: Cellular and Molecular Mechanisms of Aging in the Nervous System, Raven Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • G. Fuhrmann
    • 1
  • M. T. Strosser
    • 2
  • F. Besnard
    • 1
  • E. Kempf
    • 1
  • J. Kempf
    • 3
  • A. Ebel
    • 1
  1. 1.Centre de Neurochimie du CNRSStrasbourg CedexFrance
  2. 2.Institut de Physiologie et de Chimie BiologiqueStrasbourg CedexFrance
  3. 3.Institut de Chimie BiologiqueFaculté de MédecineStrasbourg CedexFrance

Personalised recommendations